期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
An Ensemble-Based Hotel Reviews System Using Naive Bayes Classifier
1
作者 Joseph Bamidele Awotunde Sanjay Misra +1 位作者 Vikash Katta Oluwafemi Charles Adebayo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期131-154,共24页
The task of classifying opinions conveyed in any form of text online is referred to as sentiment analysis.The emergence of social media usage and its spread has given room for sentiment analysis in our daily lives.Soc... The task of classifying opinions conveyed in any form of text online is referred to as sentiment analysis.The emergence of social media usage and its spread has given room for sentiment analysis in our daily lives.Social media applications and websites have become the foremost spring of data recycled for reviews for sentimentality in various fields.Various subject matter can be encountered on social media platforms,such as movie product reviews,consumer opinions,and testimonies,among others,which can be used for sentiment analysis.The rapid uncovering of these web contents contains divergence of many benefits like profit-making,which is one of the most vital of them all.According to a recent study,81%of consumers conduct online research prior to making a purchase.But the reviews available online are too huge and numerous for human brains to process and analyze.Hence,machine learning classifiers are one of the prominent tools used to classify sentiment in order to get valuable information for use in companies like hotels,game companies,and so on.Understanding the sentiments of people towards different commodities helps to improve the services for contextual promotions,referral systems,and market research.Therefore,this study proposes a sentiment-based framework detection to enable the rapid uncovering of opinionated contents of hotel reviews.A Naive Bayes classifier was used to process and analyze the dataset for the detection of the polarity of the words.The dataset from Datafiniti’s Business Database obtained from Kaggle was used for the experiments in this study.The performance evaluation of the model shows a test accuracy of 96.08%,an F1-score of 96.00%,a precision of 96.00%,and a recall of 96.00%.The results were compared with state-of-the-art classifiers and showed a promising performance andmuch better in terms of performancemetrics. 展开更多
关键词 Sentiment analysis hotel reviews Naive bayes algorithm consumer opinions web 2.0 machine learning
下载PDF
Retrieving reuse component based on semantic
2
作者 王燕 陈明 赵建辉 《Journal of Southeast University(English Edition)》 EI CAS 2007年第3期327-332,共6页
According to the current research status of component retrieval, the component description model based on facet classification is improved by adding semantic features. Furthermore, the component retrieval process mode... According to the current research status of component retrieval, the component description model based on facet classification is improved by adding semantic features. Furthermore, the component retrieval process model is put forward by combining the domain ontology with the relative concept match algorithm. A detailed illustration of a component reasoning engine and a component classification engine is given and the component classification algorithm is provided by using the Naive Bayes algorithm based on domain ontology. The experimental results show that the recall ratio and the precision ratio are obviously improved by using the method based on semantics, and demonstrate the feasibility and effectiveness of the proposed method. 展开更多
关键词 domain ontology facet classification naive bayes algorithm component matching component-based software development
下载PDF
未知量测噪声分布下的多扩展目标CBMeMBer滤波算法
3
作者 李浩宇 索继东 《现代电子技术》 2022年第19期66-70,共5页
在实际应用场景中,量测噪声协方差准确模型很难被建立,传统的多扩展目标跟踪算法在量测噪声协方差未知情况下跟踪性能迅速下降。为了解决量测噪声未知对多扩展目标跟踪结果造成的影响,将变分贝叶斯方法引入到CBMeMBer滤波算法中。VB-GM-... 在实际应用场景中,量测噪声协方差准确模型很难被建立,传统的多扩展目标跟踪算法在量测噪声协方差未知情况下跟踪性能迅速下降。为了解决量测噪声未知对多扩展目标跟踪结果造成的影响,将变分贝叶斯方法引入到CBMeMBer滤波算法中。VB-GM-CBMeMBer算法能在量测噪声未知情况下通过估计噪声协方差进行滤波计算,但该算法存在目标数目估计不准确的问题。针对此问题,提出一种改进的VB-GM-CBMeMBer算法,该算法在滤波算法预测步骤后引入椭球门限,使用保留在门限内的量测来进行下一步计算,以减少杂波量测,降低杂波量测对扩展目标量测的影响,提高对扩展目标状态聚类的精度。实验结果表明,该算法适用于多扩展目标数目未知、量测噪声协方差未知的情况,且其跟踪精度比GM-CBMeMBer和VB-GM-CBMeMBer滤波算法有一定提高。 展开更多
关键词 多扩展目标跟踪算法 未知量测噪声 变分贝叶斯方法 椭球门限 势均衡多目标多伯努利滤波 量测噪声 参数估计
下载PDF
基于贝叶斯极端分位数回归的金融风险相依性研究 被引量:6
4
作者 朱慧明 王春晗 +1 位作者 任英华 彭成 《中国管理科学》 CSSCI 北大核心 2016年第S1期480-488,共9页
针对分位回归模型参数的不确定性问题,构建基于贝叶斯分位数回归的联动风险价值模型,据此研究金融风险的相依性问题。通过模型的统计结构分析,选择参数先验分布,设计贝叶斯MCMC算法估计参数。并利用机构总资产收益率进行实证分析。研究... 针对分位回归模型参数的不确定性问题,构建基于贝叶斯分位数回归的联动风险价值模型,据此研究金融风险的相依性问题。通过模型的统计结构分析,选择参数先验分布,设计贝叶斯MCMC算法估计参数。并利用机构总资产收益率进行实证分析。研究结果表明:贝叶斯分位回归模型可以有效地描绘极端风险下的相依性,金融业的风险相依性大于实体行业。 展开更多
关键词 风险相依性 联动VaR 分位数回归 贝叶斯分析 MCMC算法 状态变量
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部