期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进Bayes抠图算法的麦穗小穗自动计数方法 被引量:7
1
作者 刘哲 袁冬根 王恩 《中国农业科技导报》 CAS CSCD 北大核心 2020年第8期75-82,共8页
小麦产量评估需人工获取田间单位面积的麦穗数和麦穗小穗数,往往耗时耗力。为了实现高效、自动地麦穗小穗计数,提出一种基于改进Bayes抠图算法的麦穗小穗自动计数方法。该方法首先利用改进Bayes抠图算法对获取地自然生长条件下的麦穗图... 小麦产量评估需人工获取田间单位面积的麦穗数和麦穗小穗数,往往耗时耗力。为了实现高效、自动地麦穗小穗计数,提出一种基于改进Bayes抠图算法的麦穗小穗自动计数方法。该方法首先利用改进Bayes抠图算法对获取地自然生长条件下的麦穗图像进行抠图,将麦穗从自然背景中分割出来。然后对该图像进行平滑滤波和二值化,运用迭代极限腐蚀运算对二值化图像进行腐蚀处理,去除麦穗图像中的麦芒,分离出麦穗上每个单独的麦穗小穗。再运用面积滤波滤除掉面积过小的区域,对剩余区域的黑洞进行填充,由此每个单独的麦穗小穗形成一个单独的连通区域,最后对连通区域进行标记和计数,完成麦穗小穗的自动计数。使用4个小麦品种的麦穗图像对麦穗上的小穗进行计数验证,结果表明,该方法在识别4个品种田间麦穗单幅图像中小穗数量的平均计数精度达到94.53%,平均相对误差为5.47%,对比已有麦穗小穗自动计数方法,计数精度显著提高,这对于小麦在线产量预估具有重要意义。 展开更多
关键词 麦穗计数 bayes抠图算法 麦穗小穗计数 像分割 产量预测 连通区域
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部