Early attack detection is essential to ensure the security of complex networks,especially those in critical infrastructures.This is particularly crucial in networks with multi-stage attacks,where multiple nodes are co...Early attack detection is essential to ensure the security of complex networks,especially those in critical infrastructures.This is particularly crucial in networks with multi-stage attacks,where multiple nodes are connected to external sources,through which attacks could enter and quickly spread to other network elements.Bayesian attack graphs(BAGs)are powerful models for security risk assessment and mitigation in complex networks,which provide the probabilistic model of attackers’behavior and attack progression in the network.Most attack detection techniques developed for BAGs rely on the assumption that network compromises will be detected through routine monitoring,which is unrealistic given the ever-growing complexity of threats.This paper derives the optimal minimum mean square error(MMSE)attack detection and monitoring policy for the most general form of BAGs.By exploiting the structure of BAGs and their partial and imperfect monitoring capacity,the proposed detection policy achieves the MMSE optimality possible only for linear-Gaussian state space models using Kalman filtering.An adaptive resource monitoring policy is also introduced for monitoring nodes if the expected predictive error exceeds a user-defined value.Exact and efficient matrix-form computations of the proposed policies are provided,and their high performance is demonstrated in terms of the accuracy of attack detection and the most efficient use of available resources using synthetic Bayesian attack graphs with different topologies.展开更多
Network attack graphs are originally used to evaluate what the worst security state is when a concerned net-work is under attack. Combined with intrusion evidence such like IDS alerts, attack graphs can be further use...Network attack graphs are originally used to evaluate what the worst security state is when a concerned net-work is under attack. Combined with intrusion evidence such like IDS alerts, attack graphs can be further used to perform security state posterior inference (i.e. inference based on observation experience). In this area, Bayesian network is an ideal mathematic tool, however it can not be directly applied for the following three reasons: 1) in a network attack graph, there may exist directed cycles which are never permitted in a Bayesian network, 2) there may exist temporal partial ordering relations among intrusion evidence that can-not be easily modeled in a Bayesian network, and 3) just one Bayesian network cannot be used to infer both the current and the future security state of a network. In this work, we improve an approximate Bayesian posterior inference algorithm–the likelihood-weighting algorithm to resolve the above obstacles. We give out all the pseudocodes of the algorithm and use several examples to demonstrate its benefit. Based on this, we further propose a network security assessment and enhancement method along with a small network scenario to exemplify its usage.展开更多
针对目前RFID(Radio Frequency Identification,射频识别技术)系统安全分析中忽略攻击事件对系统安全状态动态影响的问题,为了有效实现RFID系统的安全风险评估,文章提出了一种基于贝叶斯攻击图的RFID系统安全评估模型。该模型首先通过对...针对目前RFID(Radio Frequency Identification,射频识别技术)系统安全分析中忽略攻击事件对系统安全状态动态影响的问题,为了有效实现RFID系统的安全风险评估,文章提出了一种基于贝叶斯攻击图的RFID系统安全评估模型。该模型首先通过对RFID系统结构、所用协议进行分析确定系统的脆弱性漏洞及其依赖关系,建立攻击图。针对攻击图模型只能进行定性分析的问题,构建出相应的攻击图模型结构后可以结合贝叶斯理论对其进行量化。依据漏洞的利用难易度和影响程度建立RFID漏洞量化评价指标,计算出对应的原子攻击概率,然后以条件转移概率的形式将攻击节点与RFID系统的安全属性节点联系在一起,不仅能推断攻击者能够成功到达各个属性节点的风险概率,而且能够依据攻击者的不同行为动态展示系统风险状况的变化,实现评估不同状态下目标RFID系统的整体风险状况。实验表明,所提模型可以有效地计算出RFID系统整体的风险概率,为后续实施对应的安全策略提供理论依据。展开更多
针对当前攻击图模型中很少考虑攻击事件对所有属性节点置信度的动态影响,提出一种基于贝叶斯攻击图的动态风险评估(dynamic risk assessment based on Bayesian attack graphs,DRABAG)模型。该模型运用贝叶斯信念网络建立用于描述攻击...针对当前攻击图模型中很少考虑攻击事件对所有属性节点置信度的动态影响,提出一种基于贝叶斯攻击图的动态风险评估(dynamic risk assessment based on Bayesian attack graphs,DRABAG)模型。该模型运用贝叶斯信念网络建立用于描述攻击行为中多步原子攻击间因果关系的概率攻击图,其中,采用通用漏洞评分系统指标计算漏洞利用成功概率,并利用局部条件概率分布表评估属性节点的静态安全风险;进而结合入侵检测系统观测到的实时攻击事件,运用贝叶斯推理方法对单步攻击行为的后验概率进行动态更新,最终实现对目标网络整体安全性的评估。实验结果表明,该模型可评估动态安全风险和推断攻击路径,为实施安全防护策略提供依据。展开更多
目前基于攻击图的网络安全主动防御技术在计算最优防护策略时,很少考虑网络攻击中存在的不确定性因素。为此,提出一种基于贝叶斯攻击图的最优防护策略选择(Optimal Hardening Measures Selection based on Bayesian Attack Graphs,HMSB...目前基于攻击图的网络安全主动防御技术在计算最优防护策略时,很少考虑网络攻击中存在的不确定性因素。为此,提出一种基于贝叶斯攻击图的最优防护策略选择(Optimal Hardening Measures Selection based on Bayesian Attack Graphs,HMSBAG)模型。该模型通过漏洞利用成功概率和攻击成功概率描述攻击行为的不确定性;结合贝叶斯信念网络建立用于描述攻击行为中多步原子攻击间因果关系的概率攻击图,进而评估当前网络风险;构建防护成本和攻击收益的经济学指标及指标量化方法,运用成本-收益分析方法,提出了基于粒子群的最优安全防护策略选择算法。实验验证了该模型在防护策略决策方面的可行性和有效性,有效降低网络安全风险。展开更多
基金supported in part by the National Science Foundation award IIS-2202395ARMY Research Office award W911NF2110299Oracle Cloud credits and related resources provided by the Oracle for Research program.
文摘Early attack detection is essential to ensure the security of complex networks,especially those in critical infrastructures.This is particularly crucial in networks with multi-stage attacks,where multiple nodes are connected to external sources,through which attacks could enter and quickly spread to other network elements.Bayesian attack graphs(BAGs)are powerful models for security risk assessment and mitigation in complex networks,which provide the probabilistic model of attackers’behavior and attack progression in the network.Most attack detection techniques developed for BAGs rely on the assumption that network compromises will be detected through routine monitoring,which is unrealistic given the ever-growing complexity of threats.This paper derives the optimal minimum mean square error(MMSE)attack detection and monitoring policy for the most general form of BAGs.By exploiting the structure of BAGs and their partial and imperfect monitoring capacity,the proposed detection policy achieves the MMSE optimality possible only for linear-Gaussian state space models using Kalman filtering.An adaptive resource monitoring policy is also introduced for monitoring nodes if the expected predictive error exceeds a user-defined value.Exact and efficient matrix-form computations of the proposed policies are provided,and their high performance is demonstrated in terms of the accuracy of attack detection and the most efficient use of available resources using synthetic Bayesian attack graphs with different topologies.
文摘Network attack graphs are originally used to evaluate what the worst security state is when a concerned net-work is under attack. Combined with intrusion evidence such like IDS alerts, attack graphs can be further used to perform security state posterior inference (i.e. inference based on observation experience). In this area, Bayesian network is an ideal mathematic tool, however it can not be directly applied for the following three reasons: 1) in a network attack graph, there may exist directed cycles which are never permitted in a Bayesian network, 2) there may exist temporal partial ordering relations among intrusion evidence that can-not be easily modeled in a Bayesian network, and 3) just one Bayesian network cannot be used to infer both the current and the future security state of a network. In this work, we improve an approximate Bayesian posterior inference algorithm–the likelihood-weighting algorithm to resolve the above obstacles. We give out all the pseudocodes of the algorithm and use several examples to demonstrate its benefit. Based on this, we further propose a network security assessment and enhancement method along with a small network scenario to exemplify its usage.
文摘针对目前RFID(Radio Frequency Identification,射频识别技术)系统安全分析中忽略攻击事件对系统安全状态动态影响的问题,为了有效实现RFID系统的安全风险评估,文章提出了一种基于贝叶斯攻击图的RFID系统安全评估模型。该模型首先通过对RFID系统结构、所用协议进行分析确定系统的脆弱性漏洞及其依赖关系,建立攻击图。针对攻击图模型只能进行定性分析的问题,构建出相应的攻击图模型结构后可以结合贝叶斯理论对其进行量化。依据漏洞的利用难易度和影响程度建立RFID漏洞量化评价指标,计算出对应的原子攻击概率,然后以条件转移概率的形式将攻击节点与RFID系统的安全属性节点联系在一起,不仅能推断攻击者能够成功到达各个属性节点的风险概率,而且能够依据攻击者的不同行为动态展示系统风险状况的变化,实现评估不同状态下目标RFID系统的整体风险状况。实验表明,所提模型可以有效地计算出RFID系统整体的风险概率,为后续实施对应的安全策略提供理论依据。
文摘针对当前攻击图模型中很少考虑攻击事件对所有属性节点置信度的动态影响,提出一种基于贝叶斯攻击图的动态风险评估(dynamic risk assessment based on Bayesian attack graphs,DRABAG)模型。该模型运用贝叶斯信念网络建立用于描述攻击行为中多步原子攻击间因果关系的概率攻击图,其中,采用通用漏洞评分系统指标计算漏洞利用成功概率,并利用局部条件概率分布表评估属性节点的静态安全风险;进而结合入侵检测系统观测到的实时攻击事件,运用贝叶斯推理方法对单步攻击行为的后验概率进行动态更新,最终实现对目标网络整体安全性的评估。实验结果表明,该模型可评估动态安全风险和推断攻击路径,为实施安全防护策略提供依据。
文摘目前基于攻击图的网络安全主动防御技术在计算最优防护策略时,很少考虑网络攻击中存在的不确定性因素。为此,提出一种基于贝叶斯攻击图的最优防护策略选择(Optimal Hardening Measures Selection based on Bayesian Attack Graphs,HMSBAG)模型。该模型通过漏洞利用成功概率和攻击成功概率描述攻击行为的不确定性;结合贝叶斯信念网络建立用于描述攻击行为中多步原子攻击间因果关系的概率攻击图,进而评估当前网络风险;构建防护成本和攻击收益的经济学指标及指标量化方法,运用成本-收益分析方法,提出了基于粒子群的最优安全防护策略选择算法。实验验证了该模型在防护策略决策方面的可行性和有效性,有效降低网络安全风险。