Piecewise linear regression models are very flexible models for modeling the data. If the piecewise linear regression models are matched against the data, then the parameters are generally not known. This paper studie...Piecewise linear regression models are very flexible models for modeling the data. If the piecewise linear regression models are matched against the data, then the parameters are generally not known. This paper studies the problem of parameter estimation ofpiecewise linear regression models. The method used to estimate the parameters ofpicewise linear regression models is Bayesian method. But the Bayes estimator can not be found analytically. To overcome these problems, the reversible jump MCMC (Marcov Chain Monte Carlo) algorithm is proposed. Reversible jump MCMC algorithm generates the Markov chain converges to the limit distribution of the posterior distribution of the parameters ofpicewise linear regression models. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of picewise linear regression models.展开更多
In this paper, we study some robustness aspects of linear regression models of the presence of outliers or discordant observations considering the use of stable distributions for the response in place of the usual nor...In this paper, we study some robustness aspects of linear regression models of the presence of outliers or discordant observations considering the use of stable distributions for the response in place of the usual normality assumption. It is well known that, in general, there is no closed form for the probability density function of stable distributions. However, under a Bayesian approach, the use of a latent or auxiliary random variable gives some simplification to obtain any posterior distribution when related to stable distributions. To show the usefulness of the computational aspects, the methodology is applied to two examples: one is related to a standard linear regression model with an explanatory variable and the other is related to a simulated data set assuming a 23 factorial experiment. Posterior summaries of interest are obtained using MCMC (Markov Chain Monte Carlo) methods and the OpenBugs software.展开更多
Caisson breakwaters are mainly constructed in deep waters to protect an area against waves.These breakwaters are con-ventionally designed based on the concept of the safety factor.However,the wave loads and resistance...Caisson breakwaters are mainly constructed in deep waters to protect an area against waves.These breakwaters are con-ventionally designed based on the concept of the safety factor.However,the wave loads and resistance of structures have epistemic or aleatory uncertainties.Furthermore,sliding failure is one of the most important failure modes of caisson breakwaters.In most previous studies,for assessment purposes,uncertainties,such as wave and wave period variation,were ignored.Therefore,in this study,Bayesian reliability analysis is implemented to assess the failure probability of the sliding of Tombak port breakwater in the Persian Gulf.The mean and standard deviations were taken as random variables to consider dismissed uncertainties.For this purpose,the frst-order reliability method(FORM)and the frst principal curvature cor-rection in FORM are used to calculate the reliability index.The performances of these methods are verifed by importance sampling through Monte Carlo simulation(MCS).In addition,the reliability index sensitivities of each random variable are calculated to evaluate the importance of diferent random variables while calculating the caisson sliding.The results show that the reliability index is most sensitive to the coefcients of friction,wave height,and caisson weight(or concrete density).The sensitivity of the failure probability of each of the random variables and their uncertainties are calculated by the derivative method.Finally,the Bayesian regression is implemented to predict the statistical properties of breakwater sliding with non-informative priors,which are compared to Goda’s formulation,used in breakwater design standards.The analysis shows that the model posterior for the sliding of a caisson breakwater has a mean and standard deviation of 0.039 and 0.022,respectively.A normal quantile analysis and residual analysis are also performed to evaluate the correctness of the model responses.展开更多
Ore sorting is a preconcentration technology and can dramatically reduce energy and water usage to improve the sustainability and profitability of a mining operation.In porphyry Cu deposits,Cu is the primary target,wi...Ore sorting is a preconcentration technology and can dramatically reduce energy and water usage to improve the sustainability and profitability of a mining operation.In porphyry Cu deposits,Cu is the primary target,with ores usually containing secondary‘pay’metals such as Au,Mo and gangue elements such as Fe and As.Due to sensing technology limitations,secondary and deleterious materials vary in correlation type and strength with Cu but cannot be detected simultaneously via magnetic resonance(MR)ore sorting.Inferring the relationships between Cu and other elemental abundances is particularly critical for mineral processing.The variations in metal grade relationships occur due to the transition into different geological domains.This raises two questions-how to define these geological domains and how the metal grade relationship is influenced by these geological domains.In this paper,linear relationship is assumed between Cu grade and other metal grades.We applies a Bayesian hierarchical(partial-pooling)model to quantify the linear relationships between Cu,Au,and Fe grades from geochemical bore core data.The hierarchical model was compared with two other models-‘complete-pooling’model and‘nopooling’model.Mining blocks were split based on spatial domain to construct hierarchical model.Geochemical bore core data records metal grades measured from laboratory assay with spatial coordinates of sample location.Two case studies from different porphyry Cu deposits were used to evaluate the performance of the hierarchical model.Markov chain Monte Carlo(MCMC)was used to sample the posterior parameters.Our results show that the Bayesian hierarchical model dramatically reduced the posterior predictive variance for metal grades regression compared to the no-pooling model.In addition,the posterior inference in the hierarchical model is insensitive to the choice of prior.The data is wellrepresented in the posterior which indicates a robust model.The results show that the spatial domain can be successfully utilised for metal grade regression.Uncertainty in estimating the relationship between pay metals and both secondary and gangue elements is quantified and shown to be reduced with partial-pooling.Thus,the proposed Bayesian hierarchical model can offer a reliable and stable way to monitor the relationship between metal grades for ore sorting and other mineral processing options.展开更多
文摘Piecewise linear regression models are very flexible models for modeling the data. If the piecewise linear regression models are matched against the data, then the parameters are generally not known. This paper studies the problem of parameter estimation ofpiecewise linear regression models. The method used to estimate the parameters ofpicewise linear regression models is Bayesian method. But the Bayes estimator can not be found analytically. To overcome these problems, the reversible jump MCMC (Marcov Chain Monte Carlo) algorithm is proposed. Reversible jump MCMC algorithm generates the Markov chain converges to the limit distribution of the posterior distribution of the parameters ofpicewise linear regression models. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of picewise linear regression models.
基金financial support from the Brazilian Institution Conselho Nacional de Desenvolvimento Cientifico e Tecnologico(CNPq).
文摘In this paper, we study some robustness aspects of linear regression models of the presence of outliers or discordant observations considering the use of stable distributions for the response in place of the usual normality assumption. It is well known that, in general, there is no closed form for the probability density function of stable distributions. However, under a Bayesian approach, the use of a latent or auxiliary random variable gives some simplification to obtain any posterior distribution when related to stable distributions. To show the usefulness of the computational aspects, the methodology is applied to two examples: one is related to a standard linear regression model with an explanatory variable and the other is related to a simulated data set assuming a 23 factorial experiment. Posterior summaries of interest are obtained using MCMC (Markov Chain Monte Carlo) methods and the OpenBugs software.
文摘Caisson breakwaters are mainly constructed in deep waters to protect an area against waves.These breakwaters are con-ventionally designed based on the concept of the safety factor.However,the wave loads and resistance of structures have epistemic or aleatory uncertainties.Furthermore,sliding failure is one of the most important failure modes of caisson breakwaters.In most previous studies,for assessment purposes,uncertainties,such as wave and wave period variation,were ignored.Therefore,in this study,Bayesian reliability analysis is implemented to assess the failure probability of the sliding of Tombak port breakwater in the Persian Gulf.The mean and standard deviations were taken as random variables to consider dismissed uncertainties.For this purpose,the frst-order reliability method(FORM)and the frst principal curvature cor-rection in FORM are used to calculate the reliability index.The performances of these methods are verifed by importance sampling through Monte Carlo simulation(MCS).In addition,the reliability index sensitivities of each random variable are calculated to evaluate the importance of diferent random variables while calculating the caisson sliding.The results show that the reliability index is most sensitive to the coefcients of friction,wave height,and caisson weight(or concrete density).The sensitivity of the failure probability of each of the random variables and their uncertainties are calculated by the derivative method.Finally,the Bayesian regression is implemented to predict the statistical properties of breakwater sliding with non-informative priors,which are compared to Goda’s formulation,used in breakwater design standards.The analysis shows that the model posterior for the sliding of a caisson breakwater has a mean and standard deviation of 0.039 and 0.022,respectively.A normal quantile analysis and residual analysis are also performed to evaluate the correctness of the model responses.
基金This research was funded by the CSIRO ResearchPlus Science Leader Grant Program.
文摘Ore sorting is a preconcentration technology and can dramatically reduce energy and water usage to improve the sustainability and profitability of a mining operation.In porphyry Cu deposits,Cu is the primary target,with ores usually containing secondary‘pay’metals such as Au,Mo and gangue elements such as Fe and As.Due to sensing technology limitations,secondary and deleterious materials vary in correlation type and strength with Cu but cannot be detected simultaneously via magnetic resonance(MR)ore sorting.Inferring the relationships between Cu and other elemental abundances is particularly critical for mineral processing.The variations in metal grade relationships occur due to the transition into different geological domains.This raises two questions-how to define these geological domains and how the metal grade relationship is influenced by these geological domains.In this paper,linear relationship is assumed between Cu grade and other metal grades.We applies a Bayesian hierarchical(partial-pooling)model to quantify the linear relationships between Cu,Au,and Fe grades from geochemical bore core data.The hierarchical model was compared with two other models-‘complete-pooling’model and‘nopooling’model.Mining blocks were split based on spatial domain to construct hierarchical model.Geochemical bore core data records metal grades measured from laboratory assay with spatial coordinates of sample location.Two case studies from different porphyry Cu deposits were used to evaluate the performance of the hierarchical model.Markov chain Monte Carlo(MCMC)was used to sample the posterior parameters.Our results show that the Bayesian hierarchical model dramatically reduced the posterior predictive variance for metal grades regression compared to the no-pooling model.In addition,the posterior inference in the hierarchical model is insensitive to the choice of prior.The data is wellrepresented in the posterior which indicates a robust model.The results show that the spatial domain can be successfully utilised for metal grade regression.Uncertainty in estimating the relationship between pay metals and both secondary and gangue elements is quantified and shown to be reduced with partial-pooling.Thus,the proposed Bayesian hierarchical model can offer a reliable and stable way to monitor the relationship between metal grades for ore sorting and other mineral processing options.