We introduce here the concept of Bayesian networks, in compound Poisson model, which provides a graphical modeling framework that encodes the joint probability distribution for a set of random variables within a direc...We introduce here the concept of Bayesian networks, in compound Poisson model, which provides a graphical modeling framework that encodes the joint probability distribution for a set of random variables within a directed acyclic graph. We suggest an approach proposal which offers a new mixed implicit estimator. We show that the implicit approach applied in compound Poisson model is very attractive for its ability to understand data and does not require any prior information. A comparative study between learned estimates given by implicit and by standard Bayesian approaches is established. Under some conditions and based on minimal squared error calculations, we show that the mixed implicit estimator is better than the standard Bayesian and the maximum likelihood estimators. We illustrate our approach by considering a simulation study in the context of mobile communication networks.展开更多
Soil-water characteristic curve (SWCC) is significant to estimate the site-specific unsaturated soil properties (such as unsaturated shear strength and coefficient of permeability) for geotechnical analyses involving ...Soil-water characteristic curve (SWCC) is significant to estimate the site-specific unsaturated soil properties (such as unsaturated shear strength and coefficient of permeability) for geotechnical analyses involving unsaturated soils. Determining SWCC can be achieved by fitting data points obtained according to the prescribed experimental scheme, which is specified by the number of measuring points and their corresponding values of the control variable. The number of measuring points is limited since direct measurement of SWCC is often costly and time-consuming. Based on the limited number of measuring points, the estimated SWCC is unavoidably associated with uncertainties, which depends on measurement data obtained from the prescribed experimental scheme. Therefore, it is essential to plan the experimental scheme so as to reduce the uncertainty in the estimated SWCC. This study presented a Bayesian approach, called OBEDO, for probabilistic experimental design optimization of measuring SWCC based on the prior knowledge and information of testing apparatus. The uncertainty in estimated SWCC is quantified and the optimal experimental scheme with the maximum expected utility is determined by Subset Simulation optimization (SSO) in candidate experimental scheme space. The proposed approach is illustrated using an experimental design example given prior knowledge and the information of testing apparatus and is verified based on a set of real loess SWCC data, which were used to generate random experimental schemes to mimic the arbitrary arrangement of measuring points during SWCC testing in practice. Results show that the arbitrary arrangement of measuring points of SWCC testing is hardly superior to the optimal scheme obtained from OBEDO in terms of the expected utility. The proposed OBEDO approach provides a rational tool to optimize the arrangement of measuring points of SWCC test so as to obtain SWCC measurement data with relatively high expected utility for uncertainty reduction.展开更多
This study presents an application of artificial neural network(ANN)and Bayesian network(BN)for evaluation of jamming risk of the shielded tunnel boring machines(TBMs)in adverse ground conditions such as squeezing gro...This study presents an application of artificial neural network(ANN)and Bayesian network(BN)for evaluation of jamming risk of the shielded tunnel boring machines(TBMs)in adverse ground conditions such as squeezing grounds.The analysis is based on database of tunneling cases by numerical modeling to evaluate the ground convergence and possibility of machine entrapment.The results of initial numerical analysis were verified in comparison with some case studies.A dataset was established by performing additional numerical modeling of various scenarios based on variation of the most critical parameters affecting shield jamming.This includes compressive strength and deformation modulus of rock mass,tunnel radius,shield length,shield thickness,in situ stresses,depth of over-excavation,and skin friction between shield and rock.Using the dataset,an ANN was trained to predict the contact pressures from a series of ground properties and machine parameters.Furthermore,the continuous and discretized BNs were used to analyze the risk of shield jamming.The results of these two different BN methods are compared to the field observations and summarized in this paper.The developed risk models can estimate the required thrust force in both cases.The BN models can also be used in the cases with incomplete geological and geomechanical properties.展开更多
The Bayesian neural network approach has been employed to improve the nuclear magnetic moment predictions of odd-A nuclei.The Schmidt magnetic moment obtained from the extreme single-particle shell model makes large r...The Bayesian neural network approach has been employed to improve the nuclear magnetic moment predictions of odd-A nuclei.The Schmidt magnetic moment obtained from the extreme single-particle shell model makes large root-mean-square(rms)deviations from data,i.e.,0.949μN and 1.272μN for odd-neutron nuclei and odd-proton nuclei,respectively.By including the dependence of the nuclear spin and Schmidt magnetic moment,the machine-learning approach precisely describes the magnetic moments of odd-A uclei with rms deviations of 0.036μN for odd-neutron nuclei and 0.061μN for odd-proton nuclei.Furthermore,the evolution of magnetic moments along isotopic chains,including the staggering and sudden jump trend,which are difficult to describe using nuclear models,have been well reproduced by the Bayesian neural network(BNN)approach.The magnetic moments of doubly closed-shell±1 nuclei,for example,isoscalar and isovector magnetic moments,have been well studied and compared with the corresponding non-relativistic and relativistic calculations.展开更多
Fast machine learning-based surrogate models are trained to emulate slow,high-fidelity engineering simulation models to accelerate engineering design tasks.This introduces uncertainty as the surrogate is only an appro...Fast machine learning-based surrogate models are trained to emulate slow,high-fidelity engineering simulation models to accelerate engineering design tasks.This introduces uncertainty as the surrogate is only an approxi-mation of the original model.Bayesian methods can quantify that uncertainty,and deep learning models exist that follow the Bayesian paradigm.These models,namely Bayesian neural networks and Gaussian process models,enable us to give predic-tions together with an estimate of the model’s uncertainty.As a result we can derive uncertainty-aware surrogate models that can automatically identify unseen design samples that may cause large emulation errors.For these samples the high-fidelity model can be queried instead.This paper outlines how the Bayesian paradigm allows us to hybridize fast but approximate and slow but accurate models.In this paper,we train two types of Bayesian models,dropout neural networks and stochastic variational Gaussian Process models,to emulate a complex high dimensional building energy performance simulation problem.The surrogate model processes 35 building design parameters(inputs)to estimate 12 annual building energy perfor-mance metrics(outputs).We benchmark both approaches,prove their accuracy to be competitive,and show that errors can be reduced by up to 30%when the 10%of samples with the highest uncertainty are transferred to the high-fidelity model.展开更多
As the speed of optical access networks soars with ever increasing multiple services, the service-supporting ability of optical access networks suffers greatly from the shortage of service awareness. Aiming to solve t...As the speed of optical access networks soars with ever increasing multiple services, the service-supporting ability of optical access networks suffers greatly from the shortage of service awareness. Aiming to solve this problem, a hierarchy Bayesian model based services awareness mechanism is proposed for high-speed optical access networks. This approach builds a so-called hierarchy Bayesian model, according to the structure of typical optical access networks. Moreover, the proposed scheme is able to conduct simple services awareness operation in each optical network unit(ONU) and to perform complex services awareness from the whole view of system in optical line terminal(OLT). Simulation results show that the proposed scheme is able to achieve better quality of services(Qo S), in terms of packet loss rate and time delay.展开更多
文摘We introduce here the concept of Bayesian networks, in compound Poisson model, which provides a graphical modeling framework that encodes the joint probability distribution for a set of random variables within a directed acyclic graph. We suggest an approach proposal which offers a new mixed implicit estimator. We show that the implicit approach applied in compound Poisson model is very attractive for its ability to understand data and does not require any prior information. A comparative study between learned estimates given by implicit and by standard Bayesian approaches is established. Under some conditions and based on minimal squared error calculations, we show that the mixed implicit estimator is better than the standard Bayesian and the maximum likelihood estimators. We illustrate our approach by considering a simulation study in the context of mobile communication networks.
文摘Soil-water characteristic curve (SWCC) is significant to estimate the site-specific unsaturated soil properties (such as unsaturated shear strength and coefficient of permeability) for geotechnical analyses involving unsaturated soils. Determining SWCC can be achieved by fitting data points obtained according to the prescribed experimental scheme, which is specified by the number of measuring points and their corresponding values of the control variable. The number of measuring points is limited since direct measurement of SWCC is often costly and time-consuming. Based on the limited number of measuring points, the estimated SWCC is unavoidably associated with uncertainties, which depends on measurement data obtained from the prescribed experimental scheme. Therefore, it is essential to plan the experimental scheme so as to reduce the uncertainty in the estimated SWCC. This study presented a Bayesian approach, called OBEDO, for probabilistic experimental design optimization of measuring SWCC based on the prior knowledge and information of testing apparatus. The uncertainty in estimated SWCC is quantified and the optimal experimental scheme with the maximum expected utility is determined by Subset Simulation optimization (SSO) in candidate experimental scheme space. The proposed approach is illustrated using an experimental design example given prior knowledge and the information of testing apparatus and is verified based on a set of real loess SWCC data, which were used to generate random experimental schemes to mimic the arbitrary arrangement of measuring points during SWCC testing in practice. Results show that the arbitrary arrangement of measuring points of SWCC testing is hardly superior to the optimal scheme obtained from OBEDO in terms of the expected utility. The proposed OBEDO approach provides a rational tool to optimize the arrangement of measuring points of SWCC test so as to obtain SWCC measurement data with relatively high expected utility for uncertainty reduction.
文摘This study presents an application of artificial neural network(ANN)and Bayesian network(BN)for evaluation of jamming risk of the shielded tunnel boring machines(TBMs)in adverse ground conditions such as squeezing grounds.The analysis is based on database of tunneling cases by numerical modeling to evaluate the ground convergence and possibility of machine entrapment.The results of initial numerical analysis were verified in comparison with some case studies.A dataset was established by performing additional numerical modeling of various scenarios based on variation of the most critical parameters affecting shield jamming.This includes compressive strength and deformation modulus of rock mass,tunnel radius,shield length,shield thickness,in situ stresses,depth of over-excavation,and skin friction between shield and rock.Using the dataset,an ANN was trained to predict the contact pressures from a series of ground properties and machine parameters.Furthermore,the continuous and discretized BNs were used to analyze the risk of shield jamming.The results of these two different BN methods are compared to the field observations and summarized in this paper.The developed risk models can estimate the required thrust force in both cases.The BN models can also be used in the cases with incomplete geological and geomechanical properties.
基金Supported by the National Natural Science Foundation of China(11675063,11875070,11205068)the Open fund for Discipline Construction,Institute of Physical Science and Information Technology,Anhui University。
文摘The Bayesian neural network approach has been employed to improve the nuclear magnetic moment predictions of odd-A nuclei.The Schmidt magnetic moment obtained from the extreme single-particle shell model makes large root-mean-square(rms)deviations from data,i.e.,0.949μN and 1.272μN for odd-neutron nuclei and odd-proton nuclei,respectively.By including the dependence of the nuclear spin and Schmidt magnetic moment,the machine-learning approach precisely describes the magnetic moments of odd-A uclei with rms deviations of 0.036μN for odd-neutron nuclei and 0.061μN for odd-proton nuclei.Furthermore,the evolution of magnetic moments along isotopic chains,including the staggering and sudden jump trend,which are difficult to describe using nuclear models,have been well reproduced by the Bayesian neural network(BNN)approach.The magnetic moments of doubly closed-shell±1 nuclei,for example,isoscalar and isovector magnetic moments,have been well studied and compared with the corresponding non-relativistic and relativistic calculations.
基金This research was supported by grant funding from CANARIE via the BESOS project(CANARIE RS-327).
文摘Fast machine learning-based surrogate models are trained to emulate slow,high-fidelity engineering simulation models to accelerate engineering design tasks.This introduces uncertainty as the surrogate is only an approxi-mation of the original model.Bayesian methods can quantify that uncertainty,and deep learning models exist that follow the Bayesian paradigm.These models,namely Bayesian neural networks and Gaussian process models,enable us to give predic-tions together with an estimate of the model’s uncertainty.As a result we can derive uncertainty-aware surrogate models that can automatically identify unseen design samples that may cause large emulation errors.For these samples the high-fidelity model can be queried instead.This paper outlines how the Bayesian paradigm allows us to hybridize fast but approximate and slow but accurate models.In this paper,we train two types of Bayesian models,dropout neural networks and stochastic variational Gaussian Process models,to emulate a complex high dimensional building energy performance simulation problem.The surrogate model processes 35 building design parameters(inputs)to estimate 12 annual building energy perfor-mance metrics(outputs).We benchmark both approaches,prove their accuracy to be competitive,and show that errors can be reduced by up to 30%when the 10%of samples with the highest uncertainty are transferred to the high-fidelity model.
基金supported by the Science and Technology Project of State Grid Corporation of China:"Research on the Power-Grid Services Oriented"IP+Optics"Coordination Choreography Technology"
文摘As the speed of optical access networks soars with ever increasing multiple services, the service-supporting ability of optical access networks suffers greatly from the shortage of service awareness. Aiming to solve this problem, a hierarchy Bayesian model based services awareness mechanism is proposed for high-speed optical access networks. This approach builds a so-called hierarchy Bayesian model, according to the structure of typical optical access networks. Moreover, the proposed scheme is able to conduct simple services awareness operation in each optical network unit(ONU) and to perform complex services awareness from the whole view of system in optical line terminal(OLT). Simulation results show that the proposed scheme is able to achieve better quality of services(Qo S), in terms of packet loss rate and time delay.