轧辊性能直接影响钢铁轧制流程的生产效率和生产质量,结合轧辊的复杂运行环境和波动工况条件,精准预测轧辊运行状态的时序变化特征与剩余寿命对生产流程精细化、智能化、高效化尤为重要。考虑轧辊服役过程中的动态不确定性,提出一种结...轧辊性能直接影响钢铁轧制流程的生产效率和生产质量,结合轧辊的复杂运行环境和波动工况条件,精准预测轧辊运行状态的时序变化特征与剩余寿命对生产流程精细化、智能化、高效化尤为重要。考虑轧辊服役过程中的动态不确定性,提出一种结合贝叶斯神经网络的长短期记忆网络(Bayesian long short term memory,Bayesian-LSTM)方法,提取健康指标以评估轧辊健康状态,并智能预测轧辊剩余寿命,量化其分布特征的区间不确定性,进一步讨论Bayesian-LSTM网络结构参数对寿命区间的动态影响。通过某热轧厂的实际运行数据验证了方法的有效性,结果表明:所提出方法相对传统数据驱动方法,预测精度达到96.90%,实现了热轧轧辊寿命智能预测和不确定性评估。展开更多
随着新能源并网进程的推进,风电装机规模逐年扩大。受区域内天气变化影响,风机出力的间歇性和波动性特征对电网的威胁亦越发显著。极端天气所引发的风电出力异常爬坡事件,易导致电网功率失衡,对电力系统机组调度、源荷平衡造成了极大压...随着新能源并网进程的推进,风电装机规模逐年扩大。受区域内天气变化影响,风机出力的间歇性和波动性特征对电网的威胁亦越发显著。极端天气所引发的风电出力异常爬坡事件,易导致电网功率失衡,对电力系统机组调度、源荷平衡造成了极大压力。合理的风电爬坡事件检测以及精准的风电功率预测能为风电场运维及电力系统调度提供先验指导,有力缓解风电不确定性带来的危害。首先讨论了目前主流风电爬坡事件定义的盲点,分类并分析了3种风电爬坡场景的功率变化特性,据此提出基于滑动窗双边累计和(cumulative sum, CUSUM)算法的风电爬坡事件检测方法,提取时序耦合信息,捕捉短时间窗口内风电功率数据的异常波动,提高风电爬坡事件检测精度。其次,采用贝叶斯优化的长短期记忆(long short term memory, LSTM)神经网络,最优化模型超参数,提高模型对于爬坡事件发生时风机出力的预测性能。进一步应用所提风电爬坡事件检测方法,对模型预测区间内的风电爬坡事件进行检测实验,验证了所提方法的有效性。展开更多
针对当前矿区地表形变监测技术监测范围小、周期长、采样率低等问题,以龙首露天矿为工程背景,融合SBAS-InSAR技术、MIDAS数值模拟与长短期记忆(Long Short Term Memory,LSTM)网络,提出了一种边坡稳定性的分析与预测一体化方法。利用SBAS...针对当前矿区地表形变监测技术监测范围小、周期长、采样率低等问题,以龙首露天矿为工程背景,融合SBAS-InSAR技术、MIDAS数值模拟与长短期记忆(Long Short Term Memory,LSTM)网络,提出了一种边坡稳定性的分析与预测一体化方法。利用SBAS-InSAR技术获取研究区2014—2023年地表垂直向形变时序反演结果,并分析其时空演化特征与形变机理。以典型形变剖面为研究对象,采用MIDAS GTS NX软件模拟边坡在强震作用下的稳定性,并分析边坡破坏规律及形变特征。采用贝叶斯优化算法(bayesian optimization,BO)优化LSTM网络,搭建并优化预测模型用于矿区地表形变预测。结果表明:南侧边坡垂直向形变相对严重,沉降速率达176.3 mm/a,累积沉降量达1489 mm;在强震数值模拟中边坡产生严重位移变形并最终失稳;基于SBAS-InSAR监测结果对各预测模型进行精度验证,验证结果表明BO-LSTM模型的预测精度最优,平均绝对误差与均方根误差至少降低了18%和16%。采用该模型预测矿区未来地表垂直向形变,预测结果表明,未来2 a内矿区形变速率放缓,边坡处于稳定状态。展开更多
深基坑挡土墙是工程实践中常用的支护结构,对限制深基坑变形和预防工程事故起着重要的作用。深基坑工程往往会布置多个不同深度的测点,然而现有研究大多只预测了单个测点的未来侧移,浪费了其余测点的监测数据。以杭州市某深基坑工程为背...深基坑挡土墙是工程实践中常用的支护结构,对限制深基坑变形和预防工程事故起着重要的作用。深基坑工程往往会布置多个不同深度的测点,然而现有研究大多只预测了单个测点的未来侧移,浪费了其余测点的监测数据。以杭州市某深基坑工程为背景,建立基于贝叶斯优化的多输出长短期记忆(Long short term memory,LSTM)神经网络模型,在保证模型最优性能的情况下,采用历史监测数据输入对深基坑的多个测点进行预测,并单独提取墙体每日最大侧移预测值进行分析。研究结果表明:结合贝叶斯优化的多输出LSTM神经网络模型在深基坑墙体多测点侧移预测方面展现出理想的预测效果,模型R^(2)达到了0.94,每日最大侧移预测值的模型R^(2)为0.91,略低于整体预测。展开更多
旋转机械的剩余使用寿命(remaining useful life, RUL)预测对工业设备预测和健康管理的具有重要意义。该文针对多传感器冗余数据导致旋转机械退化信息提取困难、剩余使用寿命预测效果差的问题,提出了一种基于核主成分分析-长短期记忆网...旋转机械的剩余使用寿命(remaining useful life, RUL)预测对工业设备预测和健康管理的具有重要意义。该文针对多传感器冗余数据导致旋转机械退化信息提取困难、剩余使用寿命预测效果差的问题,提出了一种基于核主成分分析-长短期记忆网络(kernel principal component analysis-long short term memory, KPCA-LSTM)的方法对旋转机械剩余使用寿命预测。首先,分析旋转机械的多维退化数据,选择可以表征旋转机械退化的数据;其次,对退化数据进行(kernel principal component analysis, KPCA)融合及特征提取,将降维融合的特征作为预测模型的输入;然后构建旋转机械的健康指标,并通过多阶微分划分旋转机械的不同健康状态,建立KPCA-LSTM模型对旋转机械的剩余使用寿命进行预测;最后,在实验室搭建的矿用减速器平台上进行了试验验证。试验结果表明:该文所提方法与LSTM、粒子群优化LSTM的方法比较,该方法预测效果优于其他两种模型,并降低模型训练的复杂性,减少预测用时。展开更多
文摘轧辊性能直接影响钢铁轧制流程的生产效率和生产质量,结合轧辊的复杂运行环境和波动工况条件,精准预测轧辊运行状态的时序变化特征与剩余寿命对生产流程精细化、智能化、高效化尤为重要。考虑轧辊服役过程中的动态不确定性,提出一种结合贝叶斯神经网络的长短期记忆网络(Bayesian long short term memory,Bayesian-LSTM)方法,提取健康指标以评估轧辊健康状态,并智能预测轧辊剩余寿命,量化其分布特征的区间不确定性,进一步讨论Bayesian-LSTM网络结构参数对寿命区间的动态影响。通过某热轧厂的实际运行数据验证了方法的有效性,结果表明:所提出方法相对传统数据驱动方法,预测精度达到96.90%,实现了热轧轧辊寿命智能预测和不确定性评估。
文摘随着新能源并网进程的推进,风电装机规模逐年扩大。受区域内天气变化影响,风机出力的间歇性和波动性特征对电网的威胁亦越发显著。极端天气所引发的风电出力异常爬坡事件,易导致电网功率失衡,对电力系统机组调度、源荷平衡造成了极大压力。合理的风电爬坡事件检测以及精准的风电功率预测能为风电场运维及电力系统调度提供先验指导,有力缓解风电不确定性带来的危害。首先讨论了目前主流风电爬坡事件定义的盲点,分类并分析了3种风电爬坡场景的功率变化特性,据此提出基于滑动窗双边累计和(cumulative sum, CUSUM)算法的风电爬坡事件检测方法,提取时序耦合信息,捕捉短时间窗口内风电功率数据的异常波动,提高风电爬坡事件检测精度。其次,采用贝叶斯优化的长短期记忆(long short term memory, LSTM)神经网络,最优化模型超参数,提高模型对于爬坡事件发生时风机出力的预测性能。进一步应用所提风电爬坡事件检测方法,对模型预测区间内的风电爬坡事件进行检测实验,验证了所提方法的有效性。
文摘针对当前矿区地表形变监测技术监测范围小、周期长、采样率低等问题,以龙首露天矿为工程背景,融合SBAS-InSAR技术、MIDAS数值模拟与长短期记忆(Long Short Term Memory,LSTM)网络,提出了一种边坡稳定性的分析与预测一体化方法。利用SBAS-InSAR技术获取研究区2014—2023年地表垂直向形变时序反演结果,并分析其时空演化特征与形变机理。以典型形变剖面为研究对象,采用MIDAS GTS NX软件模拟边坡在强震作用下的稳定性,并分析边坡破坏规律及形变特征。采用贝叶斯优化算法(bayesian optimization,BO)优化LSTM网络,搭建并优化预测模型用于矿区地表形变预测。结果表明:南侧边坡垂直向形变相对严重,沉降速率达176.3 mm/a,累积沉降量达1489 mm;在强震数值模拟中边坡产生严重位移变形并最终失稳;基于SBAS-InSAR监测结果对各预测模型进行精度验证,验证结果表明BO-LSTM模型的预测精度最优,平均绝对误差与均方根误差至少降低了18%和16%。采用该模型预测矿区未来地表垂直向形变,预测结果表明,未来2 a内矿区形变速率放缓,边坡处于稳定状态。
基金Projects(52078487,U1934207,52178180)supported by the National Natural Science Foundations of ChinaProjects(2022YFB2302603,2022YFC3004304)supported by the National Key Research and Development Program of China+2 种基金Project(2022TJ-Y10)supported by the Hunan Province Science and Technology Talent Lifting,ChinaProject(SKL-IOTSC(UM)-2021-2023)supported by the Science and Technology Development Fund,ChinaProject(SKL-IoTSC(UM)-2024-2026/ORP/GA08/2023)supported by the State Key Laboratory of Internet of Things for Smart City(University of Macao),China。
文摘深基坑挡土墙是工程实践中常用的支护结构,对限制深基坑变形和预防工程事故起着重要的作用。深基坑工程往往会布置多个不同深度的测点,然而现有研究大多只预测了单个测点的未来侧移,浪费了其余测点的监测数据。以杭州市某深基坑工程为背景,建立基于贝叶斯优化的多输出长短期记忆(Long short term memory,LSTM)神经网络模型,在保证模型最优性能的情况下,采用历史监测数据输入对深基坑的多个测点进行预测,并单独提取墙体每日最大侧移预测值进行分析。研究结果表明:结合贝叶斯优化的多输出LSTM神经网络模型在深基坑墙体多测点侧移预测方面展现出理想的预测效果,模型R^(2)达到了0.94,每日最大侧移预测值的模型R^(2)为0.91,略低于整体预测。
文摘旋转机械的剩余使用寿命(remaining useful life, RUL)预测对工业设备预测和健康管理的具有重要意义。该文针对多传感器冗余数据导致旋转机械退化信息提取困难、剩余使用寿命预测效果差的问题,提出了一种基于核主成分分析-长短期记忆网络(kernel principal component analysis-long short term memory, KPCA-LSTM)的方法对旋转机械剩余使用寿命预测。首先,分析旋转机械的多维退化数据,选择可以表征旋转机械退化的数据;其次,对退化数据进行(kernel principal component analysis, KPCA)融合及特征提取,将降维融合的特征作为预测模型的输入;然后构建旋转机械的健康指标,并通过多阶微分划分旋转机械的不同健康状态,建立KPCA-LSTM模型对旋转机械的剩余使用寿命进行预测;最后,在实验室搭建的矿用减速器平台上进行了试验验证。试验结果表明:该文所提方法与LSTM、粒子群优化LSTM的方法比较,该方法预测效果优于其他两种模型,并降低模型训练的复杂性,减少预测用时。