Based on an extended Gauss-Markov model where the unknown parameters has the prior normal distribution, this paper derives the maximum posterior estimate formulas of the parameters which are proved to be unbiased,effi...Based on an extended Gauss-Markov model where the unknown parameters has the prior normal distribution, this paper derives the maximum posterior estimate formulas of the parameters which are proved to be unbiased,efficient, and of variance of unit weight which is biased. Finally, the marginal maximum posterior estimate formula of the variance with unbiased and efficient , properties is derived.展开更多
Cloud computing(CC)is an advanced technology that provides access to predictive resources and data sharing.The cloud environment represents the right type regarding cloud usage model ownership,size,and rights to acces...Cloud computing(CC)is an advanced technology that provides access to predictive resources and data sharing.The cloud environment represents the right type regarding cloud usage model ownership,size,and rights to access.It introduces the scope and nature of cloud computing.In recent times,all processes are fed into the system for which consumer data and cache size are required.One of the most security issues in the cloud environment is Distributed Denial of Ser-vice(DDoS)attacks,responsible for cloud server overloading.This proposed sys-tem ID3(Iterative Dichotomiser 3)Maximum Multifactor Dimensionality Posteriori Method(ID3-MMDP)is used to overcome the drawback and a rela-tively simple way to execute and for the detection of(DDoS)attack.First,the pro-posed ID3-MMDP method calls for the resources of the cloud platform and then implements the attack detection technology based on information entropy to detect DDoS attacks.Since because the entropy value can show the discrete or aggregated characteristics of the current data set,it can be used for the detection of abnormal dataflow,User-uploaded data,ID3-MMDP system checks and read risk measurement and processing,bug ratingfile size changes,orfile name changes and changes in the format design of the data size entropy value.Unique properties can be used whenever the program approaches any data error to detect abnormal data services.Finally,the experiment also verifies the DDoS attack detection capability algorithm.展开更多
Industrial Internet of Things(IIoT)offers efficient communication among business partners and customers.With an enlargement of IoT tools connected through the internet,the ability of web traffic gets increased.Due to ...Industrial Internet of Things(IIoT)offers efficient communication among business partners and customers.With an enlargement of IoT tools connected through the internet,the ability of web traffic gets increased.Due to the raise in the size of network traffic,discovery of attacks in IIoT and malicious traffic in the early stages is a very demanding issues.A novel technique called Maximum Posterior Dichotomous Quadratic Discriminant Jaccardized Rocchio Emphasis Boost Classification(MPDQDJREBC)is introduced for accurate attack detection wi th minimum time consumption in IIoT.The proposed MPDQDJREBC technique includes feature selection and categorization.First,the network traffic features are collected from the dataset.Then applying the Maximum Posterior Dichotomous Quadratic Discriminant analysis to find the significant features for accurate classification and minimize the time consumption.After the significant features selection,classification is performed using the Jaccardized Rocchio Emphasis Boost technique.Jaccardized Rocchio Emphasis Boost Classification technique combines the weak learner result into strong output.Jaccardized Rocchio classification technique is considered as the weak learners to identify the normal and attack.Thus,proposed MPDQDJREBC technique gives strong classification results through lessening the quadratic error.This assists for proposed MPDQDJREBC technique to get better the accuracy for attack detection with reduced time usage.Experimental assessment is carried out with UNSW_NB15 Dataset using different factors such as accuracy,precision,recall,F-measure and attack detection time.The observed results exhibit the MPDQDJREBC technique provides higher accuracy and lesser time consumption than the conventional techniques.展开更多
超声图像中的斑点噪声,降低图像分辨率和对比度,不利于后续图像处理.本文基于最大后验概率(Maximum A Posteriori,MAP)推导出一种新的超声图像分解算法,将原始超声图像分解为无散斑真实图像和散斑图像.使用六组不同的参数值,对Field II...超声图像中的斑点噪声,降低图像分辨率和对比度,不利于后续图像处理.本文基于最大后验概率(Maximum A Posteriori,MAP)推导出一种新的超声图像分解算法,将原始超声图像分解为无散斑真实图像和散斑图像.使用六组不同的参数值,对Field II仿真的超声图像进行分解试验,得出算法中比例参数对分解结果的影响规律.用该方法分解三幅人体超声图像,得到的真实图像平滑性好,且能较好的保留细节和边缘.本文提出的分解算法可用于超声图像的去噪,且分解得到的真实图像和散斑图像可用于特征提取、图像分割和图像分类等.展开更多
文摘Based on an extended Gauss-Markov model where the unknown parameters has the prior normal distribution, this paper derives the maximum posterior estimate formulas of the parameters which are proved to be unbiased,efficient, and of variance of unit weight which is biased. Finally, the marginal maximum posterior estimate formula of the variance with unbiased and efficient , properties is derived.
文摘Cloud computing(CC)is an advanced technology that provides access to predictive resources and data sharing.The cloud environment represents the right type regarding cloud usage model ownership,size,and rights to access.It introduces the scope and nature of cloud computing.In recent times,all processes are fed into the system for which consumer data and cache size are required.One of the most security issues in the cloud environment is Distributed Denial of Ser-vice(DDoS)attacks,responsible for cloud server overloading.This proposed sys-tem ID3(Iterative Dichotomiser 3)Maximum Multifactor Dimensionality Posteriori Method(ID3-MMDP)is used to overcome the drawback and a rela-tively simple way to execute and for the detection of(DDoS)attack.First,the pro-posed ID3-MMDP method calls for the resources of the cloud platform and then implements the attack detection technology based on information entropy to detect DDoS attacks.Since because the entropy value can show the discrete or aggregated characteristics of the current data set,it can be used for the detection of abnormal dataflow,User-uploaded data,ID3-MMDP system checks and read risk measurement and processing,bug ratingfile size changes,orfile name changes and changes in the format design of the data size entropy value.Unique properties can be used whenever the program approaches any data error to detect abnormal data services.Finally,the experiment also verifies the DDoS attack detection capability algorithm.
文摘Industrial Internet of Things(IIoT)offers efficient communication among business partners and customers.With an enlargement of IoT tools connected through the internet,the ability of web traffic gets increased.Due to the raise in the size of network traffic,discovery of attacks in IIoT and malicious traffic in the early stages is a very demanding issues.A novel technique called Maximum Posterior Dichotomous Quadratic Discriminant Jaccardized Rocchio Emphasis Boost Classification(MPDQDJREBC)is introduced for accurate attack detection wi th minimum time consumption in IIoT.The proposed MPDQDJREBC technique includes feature selection and categorization.First,the network traffic features are collected from the dataset.Then applying the Maximum Posterior Dichotomous Quadratic Discriminant analysis to find the significant features for accurate classification and minimize the time consumption.After the significant features selection,classification is performed using the Jaccardized Rocchio Emphasis Boost technique.Jaccardized Rocchio Emphasis Boost Classification technique combines the weak learner result into strong output.Jaccardized Rocchio classification technique is considered as the weak learners to identify the normal and attack.Thus,proposed MPDQDJREBC technique gives strong classification results through lessening the quadratic error.This assists for proposed MPDQDJREBC technique to get better the accuracy for attack detection with reduced time usage.Experimental assessment is carried out with UNSW_NB15 Dataset using different factors such as accuracy,precision,recall,F-measure and attack detection time.The observed results exhibit the MPDQDJREBC technique provides higher accuracy and lesser time consumption than the conventional techniques.
文摘超声图像中的斑点噪声,降低图像分辨率和对比度,不利于后续图像处理.本文基于最大后验概率(Maximum A Posteriori,MAP)推导出一种新的超声图像分解算法,将原始超声图像分解为无散斑真实图像和散斑图像.使用六组不同的参数值,对Field II仿真的超声图像进行分解试验,得出算法中比例参数对分解结果的影响规律.用该方法分解三幅人体超声图像,得到的真实图像平滑性好,且能较好的保留细节和边缘.本文提出的分解算法可用于超声图像的去噪,且分解得到的真实图像和散斑图像可用于特征提取、图像分割和图像分类等.