本文利用向前 Euler 方法,将具有比率依赖功能反应函数的连续模型离散化,从而得到一个新的差分方程模型。运用重合度理论以及一些先验估计,获得了差分系统正周期解的存在性结果。并通过数值模拟对相关理论结果进行了验证。This article ...本文利用向前 Euler 方法,将具有比率依赖功能反应函数的连续模型离散化,从而得到一个新的差分方程模型。运用重合度理论以及一些先验估计,获得了差分系统正周期解的存在性结果。并通过数值模拟对相关理论结果进行了验证。This article draws upon the forward Euler method to discretize a continuous model with a ratio-dependent functional response function, thereby obtaining a new difference equation mode. By using the coincidence degree theorem and some prior estimates, the existence results of positive periodic solutions for differential systems isobtained. And the relevant theoretical results were verified through numerical simu-lation.展开更多
文摘本文利用向前 Euler 方法,将具有比率依赖功能反应函数的连续模型离散化,从而得到一个新的差分方程模型。运用重合度理论以及一些先验估计,获得了差分系统正周期解的存在性结果。并通过数值模拟对相关理论结果进行了验证。This article draws upon the forward Euler method to discretize a continuous model with a ratio-dependent functional response function, thereby obtaining a new difference equation mode. By using the coincidence degree theorem and some prior estimates, the existence results of positive periodic solutions for differential systems isobtained. And the relevant theoretical results were verified through numerical simu-lation.