Objective: Our previous studies have firstly demonstrated that 17β -E2 up-regulates LRP16 gene expression in human breast cancer MCF-7 cells, and ectopic expression of the LRP16 gene promotes MCF-7 cells proliferatio...Objective: Our previous studies have firstly demonstrated that 17β -E2 up-regulates LRP16 gene expression in human breast cancer MCF-7 cells, and ectopic expression of the LRP16 gene promotes MCF-7 cells proliferation. Here, the effects of the LRP16 gene expression on growth of MCF-7 human breast cancer cells and the mechanism were further studied by establishing two stably LRP16-inhibitory MCR-7 cell lines. Methods: Hairpin small interference RNA (siRNA) strategy, by which hairpin siRNA was released by U6 promoter and was mediated by pLPC-based retroviral vector, was adopted to knockdown endogenous LRP16 level in MCF-7 cells. And the hairpin siRNA against green fluorescence protein (GFP) was used as the negative control. The suppressant efficiency of the LRP16 gene expression was confirmed by Nothern blot. Cell proliferation assay and soft agar colony formation assay were used to determine the status of the cells proliferation. Cell cycle checkpoints including cyclin E and cyclin D1 were examined by Western blot. Results: The results from cell proliferation assays suggested that down-regulation of LRP16 gene expression is capable of inhibiting MCF-7 breast cancer cell growth and down-regulation of the LRP16 gene expression is able to inhibit anchorage-independent growth of breast cancer cells in soft agar. We also demonstrated that cyclin E and cyclin D1 proteins were much lower in the LRP16-inhibitory cells than in the control cells. Conclusion: These data suggest that LRP16 gene play an important role in MCF-7 cells proliferation by regulating the pathway of the G1/S transition and may function as an important modulator in regulating the process of tumorigenesis in human breast.展开更多
Objective To silence annexin Ⅱ gene expression by using small interference RNA (siRNA) in prostate cancer cell line PC3. Methods For in vitro transcription, four sequences of 29-nucleotide DNA template oligonucleo...Objective To silence annexin Ⅱ gene expression by using small interference RNA (siRNA) in prostate cancer cell line PC3. Methods For in vitro transcription, four sequences of 29-nucleotide DNA template oligonucleotides were designed, and one pair of the sequences were complementary to annexin Ⅱ gene. The other pair was negative control. The 8 nucleotides at the 3' end of each oligonucleotide were complementary to the T7 Promoter Primer. The sense and anti-sense siRNA templates were transcribed by T7 RNA polymerase and the resulting RNA transcripts were hybridized to create dsRNA. The siRNA was transfected into prostate cancer cell PC3. For assaying the efficiency of siRNA, confocal microscopy, Northern blotting, and Western blotting were employed to examine the expression of annexin Ⅱ protein and its mRNA. ^3H thymidine was used to measure DNA synthesis. Results The siRNA sequence specific to annexin Ⅱ gene was capable of inhibiting the expression of annexin Ⅱ protein and its mRNA. And cellular DNA synthesis was significantly reduced in siRNA transfected cells.Conclusions The protocol for the synthesis of siRNA by T7 RNA polymerase is feasible. Annexin Ⅱ might be involved in DNA synthesis.展开更多
BACKGROUND: Previous studies have shown that transforming growth factor-beta 1 (TGF-beta 1) is the most potent means of stimulating liver fibrogenesis by myofibroblast-like cells derived from hepatic stellate cells. T...BACKGROUND: Previous studies have shown that transforming growth factor-beta 1 (TGF-beta 1) is the most potent means of stimulating liver fibrogenesis by myofibroblast-like cells derived from hepatic stellate cells. Thus, TGF-beta 1 could be a target for treating hepatic fibrosis. This study aimed to investigate the inhibitory effects of specific TGF-beta 1 small interference RNA (siRNA) on immune hepatic fibrosis induced by Concanavalin A (Con A) in mice. METHODS: Three short hairpin RNAs targeting different positions of TGF-beta 1 were designed and cloned to the plasmid pGenesil-1 to obtain three recombinant expression vectors (pGenesil-TGF-beta 1-ml, pGenesil-TGF-beta 1-m2 and pGenesil-TGF-beta 1-m3). Thirty male Kunming mice were randomly divided into 6 groups: normal, model, control, and three treatment groups. The immune hepatic fibrosis models were constructed by injecting Con A via the tail vein at 8 mg/kg per week for 6 weeks. At weeks 2, 4 and 6, pGenesil-TGF-beta 1-ml, pGenesil-TGF-beta 1-m2 or pGenesi1-TGF-beta 1-m3 was injected by a hydrodynamics-based transfection method via the tail vein at 0.8 ml/10 g within 24 hours after injection of Con A in each of the three treatment groups. The mice in the control group were injected with control plasmid pGenesil-HK at the same dose. All mice were sacrificed at week 7. The levels of hydroxyproline in liver tissue were determined by biochemistry. Liver histopathology was assessed by Van Gieson staining. The expression levels and localization of TGF-beta 1, Smad3, and Smad7 in liver tissue were detected by immunohistochemistry. The expression of TGF-beta 1, Smad3, Smad7 and alpha-smooth muscle actin (alpha-SMA) mRNAs in the liver were assessed by semi-quantitative RT-PCR. RESULTS: The levels of hydroxyproline in the liver tissue of the treatment groups were lower than those of the model group (P<0.01). Histopathologic assay showed that liver fibrogenesis was clearly improved in the treatment groups compared with the model group. The expression levels of TGF-beta 1 and Smad3 of liver tissue were also markedly lower in the treatment groups than in the model group (P<0.01), while the levels of Smad7 were higher in the treatment groups than in the model group (P<0.01). RT-PCR further showed that the expression of TGF-beta 1, Smad3 and alpha-SMA mRNA was significantly inhibited in the treatment groups compared with the model group, while the levels of Smad7 were increased. There was no difference in the above parameters among the three treatment groups or between the control and model groups (P>0.05), but the inhibitory effect of pGenesil-TGF-beta 1-ml was the highest among the treatment groups. CONCLUSIONS: Specific siRNA targeting of TGF-beta 1 markedly inhibited the fibrogenesis of immune hepatic fibrosis induced by Con A in mice. The anti-fibrosis mechanisms of siRNAs may be associated with the down-regulation of TGF-beta 1, Smad3 and alpha-SMA expression and up-regulation of Smad7 expression in liver tissue, which resulted in suppressing the activation of hepatic stellate cells. (Hepatobiliary Pancreat Dis Int 2009; 8: 300-308)展开更多
AIM: To observe the inhibition of hepatitis B virus (HBV) replication and expression in HepG2.2.15 cells by combination of small interfering RNAs (siRNAs). METHODS: Recombinant plasmid psiI-HBV was constructed a...AIM: To observe the inhibition of hepatitis B virus (HBV) replication and expression in HepG2.2.15 cells by combination of small interfering RNAs (siRNAs). METHODS: Recombinant plasmid psiI-HBV was constructed and transfected into HepG2.2.15 cells. At 48 h, 72 h and 96 h after transfection, culture media were collected and cells were harvested for HBV replication assay. HBsAg and HBeAg in the cell culture medium were detected by enzyme-linked immunoadsorbent assay (ELISA). Intracellular viral DNA and covalently closed circular DNA (cccDNA) were quantified by real-time polymerase chain reaction (PCR). HBV viral mRNA was reverse transcribed and quantified by reverse-transcript PCR (RT-PCR). RESULTS: siRNAs showed marked anti-HBV effects. siRNAs could specifically inhibit the expression of HBsAg and the replication of HBV DNA in a dosedependent manner. Furthermore, combination of siRNAs, compared with individual use of each siRNA, exerted a stronger inhibition on antigen expression and viral replication. More importantlycombination of siRNAs significantly suppressed HBV cccDNA amplification. CONCLUSION: Combination of siRNAs mediates a stronger inhibition on viral replication and antigenexpression in HepG2.2.15 cells, especially on cccDNA amplification.展开更多
Objective To construct an expression vector of small interfering RNA (siRNA) against survivin and observe its effects on survivin expression and proliferation of human pancreatic cancer cell line PC-2 and breast can...Objective To construct an expression vector of small interfering RNA (siRNA) against survivin and observe its effects on survivin expression and proliferation of human pancreatic cancer cell line PC-2 and breast cancer cell line MCF-7. Methods Constructed an expression vector of siRNA against survivin and transfected it into PC-2 and MCF-7 cells using lipofectamine^TM 2000. The expression of survivin was detected by semi-quanfifive RT-PCR and immunohistochemistry, and its effects on proliferation of PC-2 and MCF-7 cells were detected by MTT assay. Results The introduction of sequence-specific siRNA could efficiently suppress survivin expression at both mRNA and protein levels in the two cancer cell lines. In PC-2 cells, the expression inhibition rates were 81.25% at mRNA level and 74.24% at protein level In MCF-7 cells, the expression inhibition rates were 64.91% at mRNA level and 79. 72% at protein level The proliferation of PC-2 and MCF-7 cells was also suppressed, and24 and 48 hours after the cells were reseeded, the proliferation inhibition rates of PC-2 cells were 28. 00% and 33. 38%, and that of MCF-7 cells were 31.58% and 33.02%, respectively. Conclusions The expression vector of siRNA against survivin can block survivin expression in PC-2 and MCF-7 cells efficiently and specifically. Down regulation of survivin expression can suppress proliferation of PC-2 and MCF-7 cells. Survivin RNAi may have potential value in gene therapy of human cancers.展开更多
The most effective sequence of small interfering RNA(si RNA) silencing STAT3 of psoriatic keratinocytes(KCs) was screened out,and the effects of the most effective si RNA combined with ultrasonic irradiation and S...The most effective sequence of small interfering RNA(si RNA) silencing STAT3 of psoriatic keratinocytes(KCs) was screened out,and the effects of the most effective si RNA combined with ultrasonic irradiation and Sono Vue microbubbles on the expression of STAT3 of KCs and the dose-and time-response were investigated.Three chemically-synthetic si RNAs targeting STAT3 carried by Lipofectamine 3000 were transfected into KCs,and the effects on STAT3 expression were detected,then the most effective si RNA was selected for the subsequent experiments.The negative controls of siR NA(si RNA-NC) labeled with Cy3 carried by Lipofectamine 3000 combined with ultrasonic irradiation and Sono Vue microbubbles were transfected into KCs,then the optimal parameters of ultrasonic irradiation were determined.The most effective si RNA carried by Lipofectamine 3000 combined with ultrasonic irradiation at the optimal parameters and Sono Vue microbubbles was transfected into KCs,and the dose-and time-response of RNA interference was determined.The effect of RNA interference by the most effective si RNA at the optimal time and dose carried by Lipofectamine 3000 combined with ultrasonic irradiation and Sono Vue microbubbles(LUS group) was compared with that only carried by Lipofectamine 3000(L group).The results showed that si RNA-3 achieved the highest silencing efficacy.0.5 W/cm2 and 30 s were selected as the parameters of ultrasonic irradiation.The si RNA-3 carried by Lipofectamine 3000 combined with ultrasonic irradiation and Sono Vue microbubbles could effectively knock down the STAT3 expression at m RNA and protein levels in dose-and time-dependent manners determined at 100 nmol/L with maximum downregulation on m RNA at 48 h,and on protein at 72 h after transfection.The LUS group achieved the highest silencing efficacy.It was concluded that si RNA-3 carried by Lipofectamine 3000 combined with ultrasonic irradiation and SonoV ue microbubbles could effectively knock down the STAT3 expression in psoriatic KCs,and the optimized transfection condition and the sequence of si RNA-3 could serve for further research on gene therapy of psoriasis.展开更多
Objective: HOXB7 gene is a kind of transcription regulator over-expressed in malignant melanoma (MM) cell lines. It can specifically up-regulate the expression of angiogenic factors and tumor growth factors such as...Objective: HOXB7 gene is a kind of transcription regulator over-expressed in malignant melanoma (MM) cell lines. It can specifically up-regulate the expression of angiogenic factors and tumor growth factors such as bFGF, GROa, VEGF and induce angiogenesis in melanoma, resulting in the proliferation and metastasis of tumor cells. We designed and synthesized HOXB7 specific siRNA to study its interfering effect on the expressions of HOXB7 and bFGF genes in melanoma A375 cell line and the biologic characteristics of A375 cells. Methods: Three synthesized siRNA with different sequences were separately transfected into A375 cells by lipofecter 2000. The expression of HOXB7 and bFGF mRNA in transfected cells was detected by RT-PCR 24 and 48 hours after transduction. The expression of bFGF protein in the transfected cells were detected by flowcytometry 48 hours after transfection. MTT assay was used to analyze the cell proliferation rate of siRNA transfected cells. Based on the in vitro experiment results, one effective siRNA sequence was selected for the construction of in vivo siRNA expression vector. Then, a malignant melanoma animal model was established. The siRNA expression plasmid was injected into the tumor foci and its influence on the growth and angiogenesis of tumor was observed. Results: The mRNA expressions of both HOXB7 and bFGF genes in the A375 cells reduced significantly 24 and 48 hour after transfection of siRNA. Expression level of the protein of angiogenic factor bFGF induced by HOXB7 gene in siRNA transfected cells was significantly lower than that in control cells 48 hours after transduction. Cell proliferation was also suppressed in siRNA transfected cells. Two of the three siRNA strands showed prominent interference effect. The in vivo study indicated that the tumor size and the microvessel density in the tumor both reduced after injection of HOXB7siRNA plasmid. Conclusion: Down-regulation of HOXB7 gene expression can effectively reduce the expression of angiogenic factor bFGF and the proliferation of MM cells. Besides, the growth and angiogenesis of MM tumor were also inhibited.展开更多
Summary: Over-expression of APP and Swedish mutation could cause some familial early onset AD. In this study, a primary screening was conducted of effective small interference RNAs (siRNAs) targeted wild type APP ...Summary: Over-expression of APP and Swedish mutation could cause some familial early onset AD. In this study, a primary screening was conducted of effective small interference RNAs (siRNAs) targeted wild type APP (APPwt) and Swedish mutant APP (APPswe). One siRNA targeting APPwt and the other siRNA targeting APPswe were designed, All these siRNAs were endogenously expressed by siRNAs expressing plasmids, COS-7 cells were transiently co-transfected with APP-GFP recombinant plasmids and siRNA expression vector, The silencing effect of each siRNA was quantitatively assessed by the level of expression of green fluorescent protein (GFP). It was found that the siRNAs silenced APPwt and APPswe to different degrees, siRNA directed against APPswe was more effective in suppressing the expression of fusion gene of APPswe than that of APPwt. The silencing effect of siRNA directed against APPswe indicating allele-specific silencing property of the siRNAs. Therefore, siRNAs directed against APP play an important role both in the therapeutic study of Alzheimer disease and functional exploration ofAPP gene.展开更多
BACKGROUND: Human gliomas are more likely to express basic fibroblast growth factor-2 (FGF-2) insulin-like growth factor-1(IGF-1), and IGF-1 receptor (IGF-1R) than normal brain tissue. These factors activate si...BACKGROUND: Human gliomas are more likely to express basic fibroblast growth factor-2 (FGF-2) insulin-like growth factor-1(IGF-1), and IGF-1 receptor (IGF-1R) than normal brain tissue. These factors activate signal transduction systems of Ras/MAPK and PI3K/Akl, which promote glioma growth. OBJECTIVE: To utilize RNA interference (RNAi) technique to down-regulate FGF-2, IGF-1, and IGF-1R gene expression, and to investigate the effects of these genes on rat C6 glioma cells, as well as the feasibility of RNAi for treating glioma. DESIGN, TIME AND SETTING: This neurooncological, randomized, controlled, in vivo and in vitro experiment, which used RNAi methodology, was performed at the Laboratory of Molecular Biology, Institute of Biochemistry, Chinese Academy of Sciences between August 2005 and February 2008. MATERIALS: Rat C6 cell lines were purchased from Shanghai Institute of Cellular Biology Affiliated to Chinese Academy of Sciences. Small interfering RNA (siRNA) was synthesized by Shanghai GenePharma. Anti-IGF-1, anti-IGF-1R, anti-FGF-2, anti-mouse and anti-rabbit IgG G1-HRP antibodies were provided by Santa Cruz Biotechnology, USA. Four to six week-old BALB/c nude mice were purchased from the Laboratory Animal Center, Chinese Academy of Sciences. METHODS: C6 glioma cells were transfected with siRNA, which was chemically synthesized in vitro to correspond to endogenous FGF-2, IGF-1, and IGF-1R genes. The inhibition ratio of targeting mRNA expression was detected by semiquantitative RT-PCR, and protein expression was determined by Western blot analysis. C6 glioma cell proliferation was observed using a growth curve C6 glioma cell apoptosis rate and cell cycle were detected by flow cytometry. C6 glioma cell growth regression was observed by transwell migration assay. In addition, nude mouse subcutaneous tumor models were used in this study. For studying the anti-tumor effects of IGF-1 and IGF-1R siRNA, two blank control groups, with six mice each, were set up: A (2.5 μg siRNA was injected one week after C6 cells were inoculated, Le., when tumor volume reached 8 mm × 8 mm) and B (siRNA was injected at the same time with C6 cells were inoculated. To study the effects of FGF-2 siRNA, the groups consisted of a blank control group, negative control group, 2.6 μg siRNA group, 4 μg siRNA group, and 5.3 μg siRNA group, with six mice each. MAIN OUTCOME MEASURES: mRNA and protein inhibition ratio of FGF-2, IGF-1, and IGF-1 R; C6 glioma cell proliferation, apoptosis, and cycle growth arrest; C6 glioma cell growth regression and subcutaneous tumorigenicity rates. RESULTS: All siRNA constructs proved to be effective. After 48 hours, transfection of 200 nmol/L siRNA resulted in a FGF-2 or IGF-1R gene inhibition ratio 〉 80% and an IGF-1 gene inhibition ratio of approximately 70%. Protein expression levels for FGF-2, IGF-1, and IGF-1R decreased in a dose-dependent manner following siRNA transfection, with an inhibition rate 〉 85%, 60%, and 50%, respectively. C6 glioma cell proliferation and apoptosis rates increased in proportion to siRNA. The apoptosis rate of C6 glioma cells induced by FGF-2, IGF-1, and IGF-1R siRNA was 39.96%, 15.07% and 22.47%, respectively (P 〈 0.01). Transfection of 200 nmol/L IGF or IGF-1R siRNA for 48 hours suppressed C6 glioma cell migration. At 30 days after intratumoral injection of 2.6, 4, and 5.3 tJg FGF-2 siRNA, tumor growth regression rate of FGF-2 siRNA was 56%, 67%, and 86%, respectively. The tumor growth regression rate was 71.88% and 45.71%, respectively, when IGF-1 or IGF-1R siRNA was intratumorally injected 1 week after C6 glioma cell transplantation. When IGF-1 or IGF-1 R siRNA was intratumorally injected during C6 glioma cell transplantation, the tumor growth regression rate was 78.13% and 74.29%, respectively. CONCLUSION: siRNA transfection downregulated gene expression of FGF-2, IGF-1, and IGF-1R In addition, siRNA treatment markedly suppressed glioma cell proliferation, growth, and migration, and concomitantly reduced subcutaneous tumorigenicity.展开更多
RNA interference,widely regarded as a key mechanism for cells to regulate gene expression,is a natural gene silencing phenomenon.It can be used as the gene knockdown to reverse the multidrug resistance of tumor cells ...RNA interference,widely regarded as a key mechanism for cells to regulate gene expression,is a natural gene silencing phenomenon.It can be used as the gene knockdown to reverse the multidrug resistance of tumor cells and has been applied in the field of biomedicine,exhibiting huge potential in drug target identification,optimization of drug targets,multidrug resistance,etc.This paper first introduces the mechanism of RNA interference and the formation mechanism of multidrug resistance of tumor cells,on the basis of which it reviews the application and challenges of RNA interference technology in reversing multidrug resistance.Additionally,the development of the siRNA delivery system is illustrated.展开更多
AIM: To explore the anti-hepatitis B virus effect of RNA interference (RNAi) using small hairpin RNA (shRNA)expression vector.METHODS: Hepatitis B virus surface antigen green fluorescent protein (HBs-GFP) fusion vecto...AIM: To explore the anti-hepatitis B virus effect of RNA interference (RNAi) using small hairpin RNA (shRNA)expression vector.METHODS: Hepatitis B virus surface antigen green fluorescent protein (HBs-GFP) fusion vector and shRNA expression vectors were constructed and cotransfected transiently into HepG2 cells. mRNAs extracted from HepG2 cells were detected by real-time PCR. Fluorescence of HBs-GFP protein was detected by fluorescence-activated cell sorting (FACS). The effective shRNA expression vector was transfected into HepG2.2.15 cells. HBsAg and HBeAg in HepG2.2.15 cells were analyzed by radioimmunoassay (RIA) method.RESULTS: FACS revealed that shRNA targeting at HBsAg reduced the GFP signal by 56% compared to the control.Real-time PCR showed that HBs-GFP mRNA extracted from HepG2 cells cotransfected with pAVU6+27 and HBs-GFP expression plasmids decreased by 90% compared to the empty vector control. The expressions of HBsAg and HBeAg were also inhibited by 43% and 64%, respectively.CONCLUSION: RNAi using shRNA expression vector can inhibit the expression of HBsAg, providing a fresh approach to screening the efficient small interfering RNAs (siRNAs).展开更多
基金This work was supported by NationalNatural Science Foundation of China (No. 30200095).
文摘Objective: Our previous studies have firstly demonstrated that 17β -E2 up-regulates LRP16 gene expression in human breast cancer MCF-7 cells, and ectopic expression of the LRP16 gene promotes MCF-7 cells proliferation. Here, the effects of the LRP16 gene expression on growth of MCF-7 human breast cancer cells and the mechanism were further studied by establishing two stably LRP16-inhibitory MCR-7 cell lines. Methods: Hairpin small interference RNA (siRNA) strategy, by which hairpin siRNA was released by U6 promoter and was mediated by pLPC-based retroviral vector, was adopted to knockdown endogenous LRP16 level in MCF-7 cells. And the hairpin siRNA against green fluorescence protein (GFP) was used as the negative control. The suppressant efficiency of the LRP16 gene expression was confirmed by Nothern blot. Cell proliferation assay and soft agar colony formation assay were used to determine the status of the cells proliferation. Cell cycle checkpoints including cyclin E and cyclin D1 were examined by Western blot. Results: The results from cell proliferation assays suggested that down-regulation of LRP16 gene expression is capable of inhibiting MCF-7 breast cancer cell growth and down-regulation of the LRP16 gene expression is able to inhibit anchorage-independent growth of breast cancer cells in soft agar. We also demonstrated that cyclin E and cyclin D1 proteins were much lower in the LRP16-inhibitory cells than in the control cells. Conclusion: These data suggest that LRP16 gene play an important role in MCF-7 cells proliferation by regulating the pathway of the G1/S transition and may function as an important modulator in regulating the process of tumorigenesis in human breast.
文摘Objective To silence annexin Ⅱ gene expression by using small interference RNA (siRNA) in prostate cancer cell line PC3. Methods For in vitro transcription, four sequences of 29-nucleotide DNA template oligonucleotides were designed, and one pair of the sequences were complementary to annexin Ⅱ gene. The other pair was negative control. The 8 nucleotides at the 3' end of each oligonucleotide were complementary to the T7 Promoter Primer. The sense and anti-sense siRNA templates were transcribed by T7 RNA polymerase and the resulting RNA transcripts were hybridized to create dsRNA. The siRNA was transfected into prostate cancer cell PC3. For assaying the efficiency of siRNA, confocal microscopy, Northern blotting, and Western blotting were employed to examine the expression of annexin Ⅱ protein and its mRNA. ^3H thymidine was used to measure DNA synthesis. Results The siRNA sequence specific to annexin Ⅱ gene was capable of inhibiting the expression of annexin Ⅱ protein and its mRNA. And cellular DNA synthesis was significantly reduced in siRNA transfected cells.Conclusions The protocol for the synthesis of siRNA by T7 RNA polymerase is feasible. Annexin Ⅱ might be involved in DNA synthesis.
文摘BACKGROUND: Previous studies have shown that transforming growth factor-beta 1 (TGF-beta 1) is the most potent means of stimulating liver fibrogenesis by myofibroblast-like cells derived from hepatic stellate cells. Thus, TGF-beta 1 could be a target for treating hepatic fibrosis. This study aimed to investigate the inhibitory effects of specific TGF-beta 1 small interference RNA (siRNA) on immune hepatic fibrosis induced by Concanavalin A (Con A) in mice. METHODS: Three short hairpin RNAs targeting different positions of TGF-beta 1 were designed and cloned to the plasmid pGenesil-1 to obtain three recombinant expression vectors (pGenesil-TGF-beta 1-ml, pGenesil-TGF-beta 1-m2 and pGenesil-TGF-beta 1-m3). Thirty male Kunming mice were randomly divided into 6 groups: normal, model, control, and three treatment groups. The immune hepatic fibrosis models were constructed by injecting Con A via the tail vein at 8 mg/kg per week for 6 weeks. At weeks 2, 4 and 6, pGenesil-TGF-beta 1-ml, pGenesil-TGF-beta 1-m2 or pGenesi1-TGF-beta 1-m3 was injected by a hydrodynamics-based transfection method via the tail vein at 0.8 ml/10 g within 24 hours after injection of Con A in each of the three treatment groups. The mice in the control group were injected with control plasmid pGenesil-HK at the same dose. All mice were sacrificed at week 7. The levels of hydroxyproline in liver tissue were determined by biochemistry. Liver histopathology was assessed by Van Gieson staining. The expression levels and localization of TGF-beta 1, Smad3, and Smad7 in liver tissue were detected by immunohistochemistry. The expression of TGF-beta 1, Smad3, Smad7 and alpha-smooth muscle actin (alpha-SMA) mRNAs in the liver were assessed by semi-quantitative RT-PCR. RESULTS: The levels of hydroxyproline in the liver tissue of the treatment groups were lower than those of the model group (P<0.01). Histopathologic assay showed that liver fibrogenesis was clearly improved in the treatment groups compared with the model group. The expression levels of TGF-beta 1 and Smad3 of liver tissue were also markedly lower in the treatment groups than in the model group (P<0.01), while the levels of Smad7 were higher in the treatment groups than in the model group (P<0.01). RT-PCR further showed that the expression of TGF-beta 1, Smad3 and alpha-SMA mRNA was significantly inhibited in the treatment groups compared with the model group, while the levels of Smad7 were increased. There was no difference in the above parameters among the three treatment groups or between the control and model groups (P>0.05), but the inhibitory effect of pGenesil-TGF-beta 1-ml was the highest among the treatment groups. CONCLUSIONS: Specific siRNA targeting of TGF-beta 1 markedly inhibited the fibrogenesis of immune hepatic fibrosis induced by Con A in mice. The anti-fibrosis mechanisms of siRNAs may be associated with the down-regulation of TGF-beta 1, Smad3 and alpha-SMA expression and up-regulation of Smad7 expression in liver tissue, which resulted in suppressing the activation of hepatic stellate cells. (Hepatobiliary Pancreat Dis Int 2009; 8: 300-308)
基金The Youth Foundation of Heilongjiang Province,No.QC06C061the Foundation of Education Department,Heilongjiang Province,No.11521089
文摘AIM: To observe the inhibition of hepatitis B virus (HBV) replication and expression in HepG2.2.15 cells by combination of small interfering RNAs (siRNAs). METHODS: Recombinant plasmid psiI-HBV was constructed and transfected into HepG2.2.15 cells. At 48 h, 72 h and 96 h after transfection, culture media were collected and cells were harvested for HBV replication assay. HBsAg and HBeAg in the cell culture medium were detected by enzyme-linked immunoadsorbent assay (ELISA). Intracellular viral DNA and covalently closed circular DNA (cccDNA) were quantified by real-time polymerase chain reaction (PCR). HBV viral mRNA was reverse transcribed and quantified by reverse-transcript PCR (RT-PCR). RESULTS: siRNAs showed marked anti-HBV effects. siRNAs could specifically inhibit the expression of HBsAg and the replication of HBV DNA in a dosedependent manner. Furthermore, combination of siRNAs, compared with individual use of each siRNA, exerted a stronger inhibition on antigen expression and viral replication. More importantlycombination of siRNAs significantly suppressed HBV cccDNA amplification. CONCLUSION: Combination of siRNAs mediates a stronger inhibition on viral replication and antigenexpression in HepG2.2.15 cells, especially on cccDNA amplification.
基金Supported by the Key Science and Technology Research Project ofShaanxi Province [2003K10-G35,2004K13-G11(1)].
文摘Objective To construct an expression vector of small interfering RNA (siRNA) against survivin and observe its effects on survivin expression and proliferation of human pancreatic cancer cell line PC-2 and breast cancer cell line MCF-7. Methods Constructed an expression vector of siRNA against survivin and transfected it into PC-2 and MCF-7 cells using lipofectamine^TM 2000. The expression of survivin was detected by semi-quanfifive RT-PCR and immunohistochemistry, and its effects on proliferation of PC-2 and MCF-7 cells were detected by MTT assay. Results The introduction of sequence-specific siRNA could efficiently suppress survivin expression at both mRNA and protein levels in the two cancer cell lines. In PC-2 cells, the expression inhibition rates were 81.25% at mRNA level and 74.24% at protein level In MCF-7 cells, the expression inhibition rates were 64.91% at mRNA level and 79. 72% at protein level The proliferation of PC-2 and MCF-7 cells was also suppressed, and24 and 48 hours after the cells were reseeded, the proliferation inhibition rates of PC-2 cells were 28. 00% and 33. 38%, and that of MCF-7 cells were 31.58% and 33.02%, respectively. Conclusions The expression vector of siRNA against survivin can block survivin expression in PC-2 and MCF-7 cells efficiently and specifically. Down regulation of survivin expression can suppress proliferation of PC-2 and MCF-7 cells. Survivin RNAi may have potential value in gene therapy of human cancers.
基金supported by National Natural Science Foundation of China(No.81441126)
文摘The most effective sequence of small interfering RNA(si RNA) silencing STAT3 of psoriatic keratinocytes(KCs) was screened out,and the effects of the most effective si RNA combined with ultrasonic irradiation and Sono Vue microbubbles on the expression of STAT3 of KCs and the dose-and time-response were investigated.Three chemically-synthetic si RNAs targeting STAT3 carried by Lipofectamine 3000 were transfected into KCs,and the effects on STAT3 expression were detected,then the most effective si RNA was selected for the subsequent experiments.The negative controls of siR NA(si RNA-NC) labeled with Cy3 carried by Lipofectamine 3000 combined with ultrasonic irradiation and Sono Vue microbubbles were transfected into KCs,then the optimal parameters of ultrasonic irradiation were determined.The most effective si RNA carried by Lipofectamine 3000 combined with ultrasonic irradiation at the optimal parameters and Sono Vue microbubbles was transfected into KCs,and the dose-and time-response of RNA interference was determined.The effect of RNA interference by the most effective si RNA at the optimal time and dose carried by Lipofectamine 3000 combined with ultrasonic irradiation and Sono Vue microbubbles(LUS group) was compared with that only carried by Lipofectamine 3000(L group).The results showed that si RNA-3 achieved the highest silencing efficacy.0.5 W/cm2 and 30 s were selected as the parameters of ultrasonic irradiation.The si RNA-3 carried by Lipofectamine 3000 combined with ultrasonic irradiation and Sono Vue microbubbles could effectively knock down the STAT3 expression at m RNA and protein levels in dose-and time-dependent manners determined at 100 nmol/L with maximum downregulation on m RNA at 48 h,and on protein at 72 h after transfection.The LUS group achieved the highest silencing efficacy.It was concluded that si RNA-3 carried by Lipofectamine 3000 combined with ultrasonic irradiation and SonoV ue microbubbles could effectively knock down the STAT3 expression in psoriatic KCs,and the optimized transfection condition and the sequence of si RNA-3 could serve for further research on gene therapy of psoriasis.
基金the grants from the Research Foundation of Science & Technology Bureau of Guangzhou(2004Z2-E0011)the Guangdong Province Natural Science Foundation(5002318)
文摘Objective: HOXB7 gene is a kind of transcription regulator over-expressed in malignant melanoma (MM) cell lines. It can specifically up-regulate the expression of angiogenic factors and tumor growth factors such as bFGF, GROa, VEGF and induce angiogenesis in melanoma, resulting in the proliferation and metastasis of tumor cells. We designed and synthesized HOXB7 specific siRNA to study its interfering effect on the expressions of HOXB7 and bFGF genes in melanoma A375 cell line and the biologic characteristics of A375 cells. Methods: Three synthesized siRNA with different sequences were separately transfected into A375 cells by lipofecter 2000. The expression of HOXB7 and bFGF mRNA in transfected cells was detected by RT-PCR 24 and 48 hours after transduction. The expression of bFGF protein in the transfected cells were detected by flowcytometry 48 hours after transfection. MTT assay was used to analyze the cell proliferation rate of siRNA transfected cells. Based on the in vitro experiment results, one effective siRNA sequence was selected for the construction of in vivo siRNA expression vector. Then, a malignant melanoma animal model was established. The siRNA expression plasmid was injected into the tumor foci and its influence on the growth and angiogenesis of tumor was observed. Results: The mRNA expressions of both HOXB7 and bFGF genes in the A375 cells reduced significantly 24 and 48 hour after transfection of siRNA. Expression level of the protein of angiogenic factor bFGF induced by HOXB7 gene in siRNA transfected cells was significantly lower than that in control cells 48 hours after transduction. Cell proliferation was also suppressed in siRNA transfected cells. Two of the three siRNA strands showed prominent interference effect. The in vivo study indicated that the tumor size and the microvessel density in the tumor both reduced after injection of HOXB7siRNA plasmid. Conclusion: Down-regulation of HOXB7 gene expression can effectively reduce the expression of angiogenic factor bFGF and the proliferation of MM cells. Besides, the growth and angiogenesis of MM tumor were also inhibited.
文摘Summary: Over-expression of APP and Swedish mutation could cause some familial early onset AD. In this study, a primary screening was conducted of effective small interference RNAs (siRNAs) targeted wild type APP (APPwt) and Swedish mutant APP (APPswe). One siRNA targeting APPwt and the other siRNA targeting APPswe were designed, All these siRNAs were endogenously expressed by siRNAs expressing plasmids, COS-7 cells were transiently co-transfected with APP-GFP recombinant plasmids and siRNA expression vector, The silencing effect of each siRNA was quantitatively assessed by the level of expression of green fluorescent protein (GFP). It was found that the siRNAs silenced APPwt and APPswe to different degrees, siRNA directed against APPswe was more effective in suppressing the expression of fusion gene of APPswe than that of APPwt. The silencing effect of siRNA directed against APPswe indicating allele-specific silencing property of the siRNAs. Therefore, siRNAs directed against APP play an important role both in the therapeutic study of Alzheimer disease and functional exploration ofAPP gene.
基金the National Natural Science Foundation of China,No.30371459Science and Technology Development Fund of Shanghai,No.034047
文摘BACKGROUND: Human gliomas are more likely to express basic fibroblast growth factor-2 (FGF-2) insulin-like growth factor-1(IGF-1), and IGF-1 receptor (IGF-1R) than normal brain tissue. These factors activate signal transduction systems of Ras/MAPK and PI3K/Akl, which promote glioma growth. OBJECTIVE: To utilize RNA interference (RNAi) technique to down-regulate FGF-2, IGF-1, and IGF-1R gene expression, and to investigate the effects of these genes on rat C6 glioma cells, as well as the feasibility of RNAi for treating glioma. DESIGN, TIME AND SETTING: This neurooncological, randomized, controlled, in vivo and in vitro experiment, which used RNAi methodology, was performed at the Laboratory of Molecular Biology, Institute of Biochemistry, Chinese Academy of Sciences between August 2005 and February 2008. MATERIALS: Rat C6 cell lines were purchased from Shanghai Institute of Cellular Biology Affiliated to Chinese Academy of Sciences. Small interfering RNA (siRNA) was synthesized by Shanghai GenePharma. Anti-IGF-1, anti-IGF-1R, anti-FGF-2, anti-mouse and anti-rabbit IgG G1-HRP antibodies were provided by Santa Cruz Biotechnology, USA. Four to six week-old BALB/c nude mice were purchased from the Laboratory Animal Center, Chinese Academy of Sciences. METHODS: C6 glioma cells were transfected with siRNA, which was chemically synthesized in vitro to correspond to endogenous FGF-2, IGF-1, and IGF-1R genes. The inhibition ratio of targeting mRNA expression was detected by semiquantitative RT-PCR, and protein expression was determined by Western blot analysis. C6 glioma cell proliferation was observed using a growth curve C6 glioma cell apoptosis rate and cell cycle were detected by flow cytometry. C6 glioma cell growth regression was observed by transwell migration assay. In addition, nude mouse subcutaneous tumor models were used in this study. For studying the anti-tumor effects of IGF-1 and IGF-1R siRNA, two blank control groups, with six mice each, were set up: A (2.5 μg siRNA was injected one week after C6 cells were inoculated, Le., when tumor volume reached 8 mm × 8 mm) and B (siRNA was injected at the same time with C6 cells were inoculated. To study the effects of FGF-2 siRNA, the groups consisted of a blank control group, negative control group, 2.6 μg siRNA group, 4 μg siRNA group, and 5.3 μg siRNA group, with six mice each. MAIN OUTCOME MEASURES: mRNA and protein inhibition ratio of FGF-2, IGF-1, and IGF-1 R; C6 glioma cell proliferation, apoptosis, and cycle growth arrest; C6 glioma cell growth regression and subcutaneous tumorigenicity rates. RESULTS: All siRNA constructs proved to be effective. After 48 hours, transfection of 200 nmol/L siRNA resulted in a FGF-2 or IGF-1R gene inhibition ratio 〉 80% and an IGF-1 gene inhibition ratio of approximately 70%. Protein expression levels for FGF-2, IGF-1, and IGF-1R decreased in a dose-dependent manner following siRNA transfection, with an inhibition rate 〉 85%, 60%, and 50%, respectively. C6 glioma cell proliferation and apoptosis rates increased in proportion to siRNA. The apoptosis rate of C6 glioma cells induced by FGF-2, IGF-1, and IGF-1R siRNA was 39.96%, 15.07% and 22.47%, respectively (P 〈 0.01). Transfection of 200 nmol/L IGF or IGF-1R siRNA for 48 hours suppressed C6 glioma cell migration. At 30 days after intratumoral injection of 2.6, 4, and 5.3 tJg FGF-2 siRNA, tumor growth regression rate of FGF-2 siRNA was 56%, 67%, and 86%, respectively. The tumor growth regression rate was 71.88% and 45.71%, respectively, when IGF-1 or IGF-1R siRNA was intratumorally injected 1 week after C6 glioma cell transplantation. When IGF-1 or IGF-1 R siRNA was intratumorally injected during C6 glioma cell transplantation, the tumor growth regression rate was 78.13% and 74.29%, respectively. CONCLUSION: siRNA transfection downregulated gene expression of FGF-2, IGF-1, and IGF-1R In addition, siRNA treatment markedly suppressed glioma cell proliferation, growth, and migration, and concomitantly reduced subcutaneous tumorigenicity.
基金the Doctoral Promotion Program Research Initiation Fund of Suzhou Polytechnic Institute of Agriculture(grant number:GSP20200066).
文摘RNA interference,widely regarded as a key mechanism for cells to regulate gene expression,is a natural gene silencing phenomenon.It can be used as the gene knockdown to reverse the multidrug resistance of tumor cells and has been applied in the field of biomedicine,exhibiting huge potential in drug target identification,optimization of drug targets,multidrug resistance,etc.This paper first introduces the mechanism of RNA interference and the formation mechanism of multidrug resistance of tumor cells,on the basis of which it reviews the application and challenges of RNA interference technology in reversing multidrug resistance.Additionally,the development of the siRNA delivery system is illustrated.
基金Supported by the National Natural Science Foundation of China, No. 30371270 the Major Program of Department of Science and Technology of Zhejiang Province, No. 2003C13015
文摘AIM: To explore the anti-hepatitis B virus effect of RNA interference (RNAi) using small hairpin RNA (shRNA)expression vector.METHODS: Hepatitis B virus surface antigen green fluorescent protein (HBs-GFP) fusion vector and shRNA expression vectors were constructed and cotransfected transiently into HepG2 cells. mRNAs extracted from HepG2 cells were detected by real-time PCR. Fluorescence of HBs-GFP protein was detected by fluorescence-activated cell sorting (FACS). The effective shRNA expression vector was transfected into HepG2.2.15 cells. HBsAg and HBeAg in HepG2.2.15 cells were analyzed by radioimmunoassay (RIA) method.RESULTS: FACS revealed that shRNA targeting at HBsAg reduced the GFP signal by 56% compared to the control.Real-time PCR showed that HBs-GFP mRNA extracted from HepG2 cells cotransfected with pAVU6+27 and HBs-GFP expression plasmids decreased by 90% compared to the empty vector control. The expressions of HBsAg and HBeAg were also inhibited by 43% and 64%, respectively.CONCLUSION: RNAi using shRNA expression vector can inhibit the expression of HBsAg, providing a fresh approach to screening the efficient small interfering RNAs (siRNAs).