This study systematically introduces the development of the world’s first full-link and full-system ground demonstration and verification system for the OMEGA space solar power satellite(SSPS).First,the OMEGA 2.0 inn...This study systematically introduces the development of the world’s first full-link and full-system ground demonstration and verification system for the OMEGA space solar power satellite(SSPS).First,the OMEGA 2.0 innovation design was proposed.Second,field-coupling theoretical models of sunlight concentration,photoelectric conversion,and transmitting antennas were established,and a systematic optimization design method was proposed.Third,a beam waveform optimization methodology considering both a high beam collection efficiency and a circular stepped beam shape was proposed.Fourth,a control strategy was developed to control the condenser pointing toward the sun while maintaining the transmitting antenna toward the rectenna.Fifth,a high-efficiency heat radiator design method based on bionics and topology optimization was proposed.Sixth,a method for improving the rectenna array’s reception,rectification,and direct current(DC)power synthesis efficiencies is presented.Seventh,high-precision measurement technology for high-accuracy beam-pointing control was developed.Eighth,a smart mechanical structure was designed and developed.Finally,the developed SSPS ground demonstration and verification system has the capacity for sun tracking,a high concentration ratio,photoelectric conversion,microwave conversion and emission,microwave reception,and rectification,and thus satisfactory results were obtained.展开更多
Neutral beam injection is recognized as one of the most effective means for plasma heating. According to the research plan of the EAST physics experiment, two sets of neutral beam injector(4–8 MW, 10–100 s) were b...Neutral beam injection is recognized as one of the most effective means for plasma heating. According to the research plan of the EAST physics experiment, two sets of neutral beam injector(4–8 MW, 10–100 s) were built and operated in 2014. Neutralization efficiency is one of the important parameters for neutral beam. High neutralization efficiency can not only improve injection power at the same beam energy, but also decrease the power deposited on the heat-load components in the neutral beam injector(NBI). This research explores the power deposition distribution at different neutralization efficiencies on the beamline components of the NBI device. This work has great significance for guiding the operation of EAST-NBI, especially in long pulse and high power operation, which can reduce the risk of thermal damage of the beamline components and extend the working life of the NBI device.展开更多
This work presents an optimal design method of antenna aperture illumination for microwave power transmission with an annular collection area.The objective is to maximize the ratio of the power radiated on the annular...This work presents an optimal design method of antenna aperture illumination for microwave power transmission with an annular collection area.The objective is to maximize the ratio of the power radiated on the annular collection area to the total transmitted power.By formulating the aperture amplitude distribution through a summation of a special set of series,the optimal design problem can be reduced to finding the maximum ratio of two real quadratic forms.Based on the theory of matrices,the solution to the formulated optimization problem is to determine the largest characteristic value and its associated characteristic vector.To meet security requirements,the peak radiation levels outside the receiving area are considered to be extra constraints.A hybrid grey wolf optimizer and Nelder–Mead simplex method is developed to deal with this constrained optimization problem.In order to demonstrate the effectiveness of the proposed method,numerical experiments on continuous apertures are conducted;then,discrete arrays of isotropic elements are employed to validate the correctness of the optimized results.Finally,patch arrays are adopted to further verify the validity of the proposed method.展开更多
In this paper we address the problem of the low beam transmission efficiency of the HIRFL-SSC. The influence of the SFC-SSC energy match, the SSC RF voltage, and harmonic field in the injection area of the SSC, and th...In this paper we address the problem of the low beam transmission efficiency of the HIRFL-SSC. The influence of the SFC-SSC energy match, the SSC RF voltage, and harmonic field in the injection area of the SSC, and the SSC central trajectory on the beam transmission efficiency have been analyzed both from the theoretical side and from the actual operating data. The main reason is that the soft-edge approximation of the magnet field (the so-called theoretical field) and the simplified calculation programs were adopted when calculating the beam center trajectory and designing the injection and extraction system, and the measured magnetic field was not used to correct the calculation results. These led to large deviations of the calculated center trajectory, and then resulted in low efficiency of the SSC beam transmission. Therefore, the re-calculation of SSC beam center trajectory and injection and extraction system, as well as the measured magnet field correction are the key points required to solve the problem.展开更多
This paper reports the experimental realization of efficiently sorting vector beams by polarization topological charge (PTC). The PTC of a vector beam can be defined as the repetition number of polarization state ch...This paper reports the experimental realization of efficiently sorting vector beams by polarization topological charge (PTC). The PTC of a vector beam can be defined as the repetition number of polarization state change along the azimuthal axis, while its sign stands for the rotating direction of the polarization. Here, a couple of liquid crystal Pancharatnam-Berry optical dements (PBOEs) have been used to introduce conjugated spatial phase modulations for two orthogonal circular polarization states. Applying these PBOEs in a 4-foptical system, our experiments show the setup can work for PTC sorting with a separation efficiency of more than 58%. This work provides an effective way to decode information from different PTCs, which may be interesting in many fields, especially in optical communication.展开更多
In order to further improve beam transmission efficiency at the SSC, the beam center trajectory and injection and extraction system are recalculated based on the program group used in the final design of the GANIL acc...In order to further improve beam transmission efficiency at the SSC, the beam center trajectory and injection and extraction system are recalculated based on the program group used in the final design of the GANIL accelerator, with some necessary changes and the addition of some auxiliary programs. The two different types of injection and extraction elements (the bending magnet and the inductive septum) are distinguished, and their interaction with the ambient field is considered. More focus is placed on considering the differences in the magnet field inhomogeneity of the ambient field in the located area of the inductive septum where the ends are situated in the ambient field (between the main magnet poles). Thus the gradient magnetic field problem of the inductive septum is solved perfectly. As well as preparing the necessary auxiliary programs and taking the structural integration of the SSC magnetic field maps, the measured magnet field correction is completed. Therefore, the trajectory and a variety of injection and extraction system parameters are obtained. According to the recalculation results, the SSC beam transmission efficiency will be enhanced significantly.展开更多
文摘This study systematically introduces the development of the world’s first full-link and full-system ground demonstration and verification system for the OMEGA space solar power satellite(SSPS).First,the OMEGA 2.0 innovation design was proposed.Second,field-coupling theoretical models of sunlight concentration,photoelectric conversion,and transmitting antennas were established,and a systematic optimization design method was proposed.Third,a beam waveform optimization methodology considering both a high beam collection efficiency and a circular stepped beam shape was proposed.Fourth,a control strategy was developed to control the condenser pointing toward the sun while maintaining the transmitting antenna toward the rectenna.Fifth,a high-efficiency heat radiator design method based on bionics and topology optimization was proposed.Sixth,a method for improving the rectenna array’s reception,rectification,and direct current(DC)power synthesis efficiencies is presented.Seventh,high-precision measurement technology for high-accuracy beam-pointing control was developed.Eighth,a smart mechanical structure was designed and developed.Finally,the developed SSPS ground demonstration and verification system has the capacity for sun tracking,a high concentration ratio,photoelectric conversion,microwave conversion and emission,microwave reception,and rectification,and thus satisfactory results were obtained.
基金supported by the International Science and Technology Cooperation Program of China(No.2014DFG61950)National Natural Science Foundation of China(No.11405207)the Foundation of ASIPP(No.DSJJ-15-GC03)
文摘Neutral beam injection is recognized as one of the most effective means for plasma heating. According to the research plan of the EAST physics experiment, two sets of neutral beam injector(4–8 MW, 10–100 s) were built and operated in 2014. Neutralization efficiency is one of the important parameters for neutral beam. High neutralization efficiency can not only improve injection power at the same beam energy, but also decrease the power deposited on the heat-load components in the neutral beam injector(NBI). This research explores the power deposition distribution at different neutralization efficiencies on the beamline components of the NBI device. This work has great significance for guiding the operation of EAST-NBI, especially in long pulse and high power operation, which can reduce the risk of thermal damage of the beamline components and extend the working life of the NBI device.
基金supported in part by the National Key Research and Development Program of China(2021YFB3900300)in part by the National Natural Science Foundation of China(62201416)+2 种基金in part by the Fundamental Research Funds for the Central Universities(QTZX23070)in part by the Qin Chuang Yuan High-Level Innovative and Entrepreneurial Talents Project(QCYRCXM-2022-314)in part by Singapore Ministry of Education Academic Research Fund Tier 1。
文摘This work presents an optimal design method of antenna aperture illumination for microwave power transmission with an annular collection area.The objective is to maximize the ratio of the power radiated on the annular collection area to the total transmitted power.By formulating the aperture amplitude distribution through a summation of a special set of series,the optimal design problem can be reduced to finding the maximum ratio of two real quadratic forms.Based on the theory of matrices,the solution to the formulated optimization problem is to determine the largest characteristic value and its associated characteristic vector.To meet security requirements,the peak radiation levels outside the receiving area are considered to be extra constraints.A hybrid grey wolf optimizer and Nelder–Mead simplex method is developed to deal with this constrained optimization problem.In order to demonstrate the effectiveness of the proposed method,numerical experiments on continuous apertures are conducted;then,discrete arrays of isotropic elements are employed to validate the correctness of the optimized results.Finally,patch arrays are adopted to further verify the validity of the proposed method.
文摘In this paper we address the problem of the low beam transmission efficiency of the HIRFL-SSC. The influence of the SFC-SSC energy match, the SSC RF voltage, and harmonic field in the injection area of the SSC, and the SSC central trajectory on the beam transmission efficiency have been analyzed both from the theoretical side and from the actual operating data. The main reason is that the soft-edge approximation of the magnet field (the so-called theoretical field) and the simplified calculation programs were adopted when calculating the beam center trajectory and designing the injection and extraction system, and the measured magnetic field was not used to correct the calculation results. These led to large deviations of the calculated center trajectory, and then resulted in low efficiency of the SSC beam transmission. Therefore, the re-calculation of SSC beam center trajectory and injection and extraction system, as well as the measured magnet field correction are the key points required to solve the problem.
基金National Natural Science Foundation of China(NSFC)(61490710,61705132,61775142)Science and Technology Planning Project of Guangdong Province(2016B050501005)Specialized Research Fund for the Shenzhen Strategic Emerging Industries Development(JCYJ20170412105812811)
文摘This paper reports the experimental realization of efficiently sorting vector beams by polarization topological charge (PTC). The PTC of a vector beam can be defined as the repetition number of polarization state change along the azimuthal axis, while its sign stands for the rotating direction of the polarization. Here, a couple of liquid crystal Pancharatnam-Berry optical dements (PBOEs) have been used to introduce conjugated spatial phase modulations for two orthogonal circular polarization states. Applying these PBOEs in a 4-foptical system, our experiments show the setup can work for PTC sorting with a separation efficiency of more than 58%. This work provides an effective way to decode information from different PTCs, which may be interesting in many fields, especially in optical communication.
文摘In order to further improve beam transmission efficiency at the SSC, the beam center trajectory and injection and extraction system are recalculated based on the program group used in the final design of the GANIL accelerator, with some necessary changes and the addition of some auxiliary programs. The two different types of injection and extraction elements (the bending magnet and the inductive septum) are distinguished, and their interaction with the ambient field is considered. More focus is placed on considering the differences in the magnet field inhomogeneity of the ambient field in the located area of the inductive septum where the ends are situated in the ambient field (between the main magnet poles). Thus the gradient magnetic field problem of the inductive septum is solved perfectly. As well as preparing the necessary auxiliary programs and taking the structural integration of the SSC magnetic field maps, the measured magnet field correction is completed. Therefore, the trajectory and a variety of injection and extraction system parameters are obtained. According to the recalculation results, the SSC beam transmission efficiency will be enhanced significantly.