期刊文献+
共找到115,287篇文章
< 1 2 250 >
每页显示 20 50 100
Long Time Behavior of a Class of Generalized Beam-Kirchhoff Equations
1
作者 Guoguang Lin Keshun Peng 《Journal of Applied Mathematics and Physics》 2023年第10期2963-2981,共19页
In this paper, we study the long time behavior of a class of generalized Beam-Kirchhoff equation , and prove the existence and uniqueness of the global solution of this class of equation by Galerkin method by making s... In this paper, we study the long time behavior of a class of generalized Beam-Kirchhoff equation , and prove the existence and uniqueness of the global solution of this class of equation by Galerkin method by making some assumptions about the nonlinear function term . The existence of the family of global attractor and its Hausdorff dimension and Fractal dimension estimation are proved. 展开更多
关键词 beam-kirchhoff equation Galerkin’s Method The Family of Global Attractor Dimension Estimation
下载PDF
Some Modified Equations of the Sine-Hilbert Type
2
作者 闫铃娟 刘亚杰 胡星标 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第4期1-6,共6页
Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based... Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based on these bilinear equations, some exact solutions to the three modified equations are derived. 展开更多
关键词 BILINEAR equationS equation
下载PDF
Data-Driven Ai-and Bi-Soliton of the Cylindrical Korteweg-de Vries Equation via Prior-Information Physics-Informed Neural Networks
3
作者 田十方 李彪 张钊 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第3期1-6,共6页
By the modifying loss function MSE and training area of physics-informed neural networks(PINNs),we propose a neural networks model,namely prior-information PINNs(PIPINNs).We demonstrate the advantages of PIPINNs by si... By the modifying loss function MSE and training area of physics-informed neural networks(PINNs),we propose a neural networks model,namely prior-information PINNs(PIPINNs).We demonstrate the advantages of PIPINNs by simulating Ai-and Bi-soliton solutions of the cylindrical Korteweg-de Vries(cKdV)equation. 展开更多
关键词 equation SOLITON CYLINDRICAL
下载PDF
Matrix Riccati Equations in Optimal Control
4
作者 Malick Ndiaye 《Applied Mathematics》 2024年第3期199-213,共15页
In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied tho... In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied thoroughly, matrix Riccati equation of which scalar Riccati equations is a particular case, is much less investigated. This article proposes a change of variable that allows to find explicit solution of the Matrix Riccati equation. We then apply this solution to Optimal Control. 展开更多
关键词 Optimal Control Matrix Riccati equation Change of Variable
下载PDF
THE SMOOTHING EFFECT IN SHARP GEVREY SPACE FOR THE SPATIALLY HOMOGENEOUS NON-CUTOFF BOLTZMANN EQUATIONS WITH A HARDPOTENTIAL
5
作者 刘吕桥 曾娟 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期455-473,共19页
In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation e... In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation enjoys similar regularity properties as to whose of the fractional heat equation. We prove that any solution with mild regularity will become smooth in Gevrey class at positive time, with a sharp Gevrey index, depending on the angular singularity. Our proof relies on the elementary L^(2) weighted estimates. 展开更多
关键词 Boltzmann equation Gevrey regularity non-cutoff hard potential
下载PDF
On entire solutions of some Fermat type differential-difference equations
6
作者 LONG Jian-ren QIN Da-zhuan 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第1期69-88,共20页
On one hand,we study the existence of transcendental entire solutions with finite order of the Fermat type difference equations.On the other hand,we also investigate the existence and growth of solutions of nonlinear ... On one hand,we study the existence of transcendental entire solutions with finite order of the Fermat type difference equations.On the other hand,we also investigate the existence and growth of solutions of nonlinear differential-difference equations.These results extend and improve some previous in[5,14]. 展开更多
关键词 entire solutions differential-difference equations EXISTENCE finite order
下载PDF
Equivalence between the internal observability and equation
7
作者 LIU Wen-jun TU Zhi-yu 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第1期89-97,共9页
This paper is concerned with a third order in time linear Moore-Gibson-Thompson equation which describes the acoustic velocity potential in ultrasound wave program.Influenced by the work of Kaltenbacher,Lasiecka and M... This paper is concerned with a third order in time linear Moore-Gibson-Thompson equation which describes the acoustic velocity potential in ultrasound wave program.Influenced by the work of Kaltenbacher,Lasiecka and Marchand(Control Cybernet.2011,40:971-988),we establish an observability inequality of the conservative problem,and then discuss the equivalence between the exponential stabilization of a dissipative system and the internal observational inequality of the corresponding conservative system. 展开更多
关键词 Moore-Gibson-Thompson equation internal observability exponential stability
下载PDF
On Two Types of Stability of Solutions to a Pair of Damped Coupled Nonlinear Evolution Equations
8
作者 Mark Jones 《Advances in Pure Mathematics》 2024年第5期354-366,共13页
The stability of a set of spatially constant plane wave solutions to a pair of damped coupled nonlinear Schrödinger evolution equations is considered. The equations could model physical phenomena arising in fluid... The stability of a set of spatially constant plane wave solutions to a pair of damped coupled nonlinear Schrödinger evolution equations is considered. The equations could model physical phenomena arising in fluid dynamics, fibre optics or electron plasmas. The main result is that any small perturbation to the solution remains small for all time. Here small is interpreted as being both in the supremum sense and the square integrable sense. 展开更多
关键词 Nonlinear Schrödinger equation STABILITY Capillary-Gravity Waves
下载PDF
Exact and heuristic formulae to compute the geodetic height from the ellipse equation
9
作者 Mohamed Eleiche Ahmed Hamdi Mansi 《Geodesy and Geodynamics》 EI CSCD 2024年第2期150-155,共6页
The conversion of the cartesian coordinates of a point to its geodetic equivalent coordinates in reference to the geodetic ellipsoid is one of the main challenges in geodesy.The ellipse equation in the meridian plane ... The conversion of the cartesian coordinates of a point to its geodetic equivalent coordinates in reference to the geodetic ellipsoid is one of the main challenges in geodesy.The ellipse equation in the meridian plane significantly influences the value of the geodetic coordinates.This research analyzes this influence and how it can contribute to their solutions.The study investigates the mathematical relation between them and presents an exact formula relating to the geodetic height and the ellipse equation.In addition,a heuristic formula for the relation between the geodetic height and the ellipse equation is proposed,which is independent of the geodetic latitude and has a relative accuracy better than 99.9 %.The calculation is stable,and the cost is low. 展开更多
关键词 Ellipse equation Geodetic height Heuristic geodetic height
下载PDF
A deep learning method based on prior knowledge with dual training for solving FPK equation
10
作者 彭登辉 王神龙 黄元辰 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期250-263,共14页
The evolution of the probability density function of a stochastic dynamical system over time can be described by a Fokker–Planck–Kolmogorov(FPK) equation, the solution of which determines the distribution of macrosc... The evolution of the probability density function of a stochastic dynamical system over time can be described by a Fokker–Planck–Kolmogorov(FPK) equation, the solution of which determines the distribution of macroscopic variables in the stochastic dynamic system. Traditional methods for solving these equations often struggle with computational efficiency and scalability, particularly in high-dimensional contexts. To address these challenges, this paper proposes a novel deep learning method based on prior knowledge with dual training to solve the stationary FPK equations. Initially, the neural network is pre-trained through the prior knowledge obtained by Monte Carlo simulation(MCS). Subsequently, the second training phase incorporates the FPK differential operator into the loss function, while a supervisory term consisting of local maximum points is specifically included to mitigate the generation of zero solutions. This dual-training strategy not only expedites convergence but also enhances computational efficiency, making the method well-suited for high-dimensional systems. Numerical examples, including two different two-dimensional(2D), six-dimensional(6D), and eight-dimensional(8D) systems, are conducted to assess the efficacy of the proposed method. The results demonstrate robust performance in terms of both computational speed and accuracy for solving FPK equations in the first three systems. While the method is also applicable to high-dimensional systems, such as 8D, it should be noted that computational efficiency may be marginally compromised due to data volume constraints. 展开更多
关键词 deep learning prior knowledge FPK equation probability density function
下载PDF
Sparse-Grid Implementation of Fixed-Point Fast Sweeping WENO Schemes for Eikonal Equations
11
作者 Zachary M.Miksis Yong-Tao Zhang 《Communications on Applied Mathematics and Computation》 EI 2024年第1期3-29,共27页
Fixed-point fast sweeping methods are a class of explicit iterative methods developed in the literature to efficiently solve steady-state solutions of hyperbolic partial differential equations(PDEs).As other types of ... Fixed-point fast sweeping methods are a class of explicit iterative methods developed in the literature to efficiently solve steady-state solutions of hyperbolic partial differential equations(PDEs).As other types of fast sweeping schemes,fixed-point fast sweeping methods use the Gauss-Seidel iterations and alternating sweeping strategy to cover characteristics of hyperbolic PDEs in a certain direction simultaneously in each sweeping order.The resulting iterative schemes have a fast convergence rate to steady-state solutions.Moreover,an advantage of fixed-point fast sweeping methods over other types of fast sweeping methods is that they are explicit and do not involve the inverse operation of any nonlinear local system.Hence,they are robust and flexible,and have been combined with high-order accurate weighted essentially non-oscillatory(WENO)schemes to solve various hyperbolic PDEs in the literature.For multidimensional nonlinear problems,high-order fixed-point fast sweeping WENO methods still require quite a large amount of computational costs.In this technical note,we apply sparse-grid techniques,an effective approximation tool for multidimensional problems,to fixed-point fast sweeping WENO methods for reducing their computational costs.Here,we focus on fixed-point fast sweeping WENO schemes with third-order accuracy(Zhang et al.2006[41]),for solving Eikonal equations,an important class of static Hamilton-Jacobi(H-J)equations.Numerical experiments on solving multidimensional Eikonal equations and a more general static H-J equation are performed to show that the sparse-grid computations of the fixed-point fast sweeping WENO schemes achieve large savings of CPU times on refined meshes,and at the same time maintain comparable accuracy and resolution with those on corresponding regular single grids. 展开更多
关键词 Fixed-point fast sweeping methods Weighted essentially non-oscillatory(WENO)schemes Sparse grids Static Hamilton-Jacobi(H-J)equations Eikonal equations
下载PDF
Memory effect in time fractional Schrödinger equation
12
作者 祖传金 余向阳 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期216-221,共6页
A significant obstacle impeding the advancement of the time fractional Schrodinger equation lies in the challenge of determining its precise mathematical formulation.In order to address this,we undertake an exploratio... A significant obstacle impeding the advancement of the time fractional Schrodinger equation lies in the challenge of determining its precise mathematical formulation.In order to address this,we undertake an exploration of the time fractional Schrodinger equation within the context of a non-Markovian environment.By leveraging a two-level atom as an illustrative case,we find that the choice to raise i to the order of the time derivative is inappropriate.In contrast to the conventional approach used to depict the dynamic evolution of quantum states in a non-Markovian environment,the time fractional Schrodinger equation,when devoid of fractional-order operations on the imaginary unit i,emerges as a more intuitively comprehensible framework in physics and offers greater simplicity in computational aspects.Meanwhile,we also prove that it is meaningless to study the memory of time fractional Schrodinger equation with time derivative 1<α≤2.It should be noted that we have not yet constructed an open system that can be fully described by the time fractional Schrodinger equation.This will be the focus of future research.Our study might provide a new perspective on the role of time fractional Schrodinger equation. 展开更多
关键词 time fractional Schrodinger equation memory effect non-Markovian environment
下载PDF
THE EXACT MEROMORPHIC SOLUTIONS OF SOME NONLINEAR DIFFERENTIAL EQUATIONS
13
作者 刘慧芳 毛志强 《Acta Mathematica Scientia》 SCIE CSCD 2024年第1期103-114,共12页
We find the exact forms of meromorphic solutions of the nonlinear differential equations■,n≥3,k≥1,where q,Q are nonzero polynomials,Q■Const.,and p_(1),p_(2),α_(1),α_(2)are nonzero constants withα_(1)≠α_(2).Co... We find the exact forms of meromorphic solutions of the nonlinear differential equations■,n≥3,k≥1,where q,Q are nonzero polynomials,Q■Const.,and p_(1),p_(2),α_(1),α_(2)are nonzero constants withα_(1)≠α_(2).Compared with previous results on the equation p(z)f^(3)+q(z)f"=-sinα(z)with polynomial coefficients,our results show that the coefficient of the term f^((k))perturbed by multiplying an exponential function will affect the structure of its solutions. 展开更多
关键词 Nevanlinna theory nonlinear differential equations meromorphic functions entire functions
下载PDF
Continuous-Time Channel Prediction Based on Tensor Neural Ordinary Differential Equation
14
作者 Mingyao Cui Hao Jiang +2 位作者 Yuhao Chen Yang Du Linglong Dai 《China Communications》 SCIE CSCD 2024年第1期163-174,共12页
Channel prediction is critical to address the channel aging issue in mobile scenarios.Existing channel prediction techniques are mainly designed for discrete channel prediction,which can only predict the future channe... Channel prediction is critical to address the channel aging issue in mobile scenarios.Existing channel prediction techniques are mainly designed for discrete channel prediction,which can only predict the future channel in a fixed time slot per frame,while the other intra-frame channels are usually recovered by interpolation.However,these approaches suffer from a serious interpolation loss,especially for mobile millimeter-wave communications.To solve this challenging problem,we propose a tensor neural ordinary differential equation(TN-ODE)based continuous-time channel prediction scheme to realize the direct prediction of intra-frame channels.Specifically,inspired by the recently developed continuous mapping model named neural ODE in the field of machine learning,we first utilize the neural ODE model to predict future continuous-time channels.To improve the channel prediction accuracy and reduce computational complexity,we then propose the TN-ODE scheme to learn the structural characteristics of the high-dimensional channel by low-dimensional learnable transform.Simulation results show that the proposed scheme is able to achieve higher intra-frame channel prediction accuracy than existing schemes. 展开更多
关键词 channel prediction massive multipleinput-multiple-output millimeter-wave communications ordinary differential equation
下载PDF
Investigation of Acoustomagnetoelectric Effect in Bandgap Graphene by the Boltzmann Transport Equation
15
作者 Raymond Edziah Samuel S. Bentsiefi +6 位作者 Kwadwo Dompreh Anthony Twum Emmanuel Kofi Amewode Patrick Mensah-Amoah Ebenezer T. Tatchie Cynthia Jebuni-Adanu Samuel Y. Mensah 《World Journal of Condensed Matter Physics》 CAS 2024年第1期10-20,共11页
We study the acoustomagnetoelectric (AME) effect in two-dimensional graphene with an energy bandgap using the semiclassical Boltzmann transport equation within the hypersound regime, (where represents the acoustic wav... We study the acoustomagnetoelectric (AME) effect in two-dimensional graphene with an energy bandgap using the semiclassical Boltzmann transport equation within the hypersound regime, (where represents the acoustic wavenumber and is the mean free path of the electron). The Boltzmann transport equation and other relevant equations were solved analytically to obtain an expression for the AME current density, consisting of longitudinal and Hall components. Our numerical results indicate that both components of the AME current densities display oscillatory behaviour. Furthermore, geometric resonances and Weiss oscillations were each defined using the relationship between the current density and Surface Acoustic Wave (SAW) frequency and the inverse of the applied magnetic field, respectively. Our results show that the AME current density of bandgap graphene, which can be controlled to suit a particular electronic device application, is smaller than that of (gapless) graphene and is therefore, more suited for nanophotonic device applications. 展开更多
关键词 Boltzmann Transport equation Acoustomagnetoelctric Effect Surface Acoustic Wave Gapless Graphene Weiss Oscillations
下载PDF
Approximate solution of Volterra-Fredholm integral equations using generalized barycentric rational interpolant
16
作者 Hadis Azin Fakhrodin Mohammadi 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第2期220-238,共19页
It is well-known that interpolation by rational functions results in a more accurate approximation than the polynomials interpolation.However,classical rational interpolation has some deficiencies such as uncontrollab... It is well-known that interpolation by rational functions results in a more accurate approximation than the polynomials interpolation.However,classical rational interpolation has some deficiencies such as uncontrollable poles and low convergence order.In contrast with the classical rational interpolants,the generalized barycentric rational interpolants which depend linearly on the interpolated values,yield infinite smooth approximation with no poles in real numbers.In this paper,a numerical collocation approach,based on the generalized barycentric rational interpolation and Gaussian quadrature formula,was introduced to approximate the solution of Volterra-Fredholm integral equations.Three types of points in the solution domain are used as interpolation nodes.The obtained numerical results confirm that the barycentric rational interpolants are efficient tools for solving Volterra-Fredholm integral equations.Moreover,integral equations with Runge’s function as an exact solution,no oscillation occurrs in the obtained approximate solutions so that the Runge’s phenomenon is avoided. 展开更多
关键词 Barycentric rational interpolation Volterra-Fredholm integral equations Gaussian quadrature Runge's phenomenon
下载PDF
Experimental study on the size effect on the equation of state of concretes under shock loading
17
作者 Mei Li Jian Cui +2 位作者 Yanchao Shi Baijian Tang Xin Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期160-167,共8页
Adopting the classical theory of hydrocodes,the constitutive relations of concretes are separated into an equation of state(EoS)which describes the volumetric behavior of concrete material and a strength model which d... Adopting the classical theory of hydrocodes,the constitutive relations of concretes are separated into an equation of state(EoS)which describes the volumetric behavior of concrete material and a strength model which depicts the shear properties of concrete.The experiments on the EoS of concrete is always challenging due to the technical difficulties and equipment limitations,especially for the specimen size effect on the EoS.Although some researchers investigate the shock properties of concretes by fly-plate impact tests,the specimens used in their tests are usually in one size.In this paper,the fly-plate impact tests on concrete specimens with different sizes are performed to investigate the size effect on the shock properties of concrete materials.The mechanical background of the size effect on the shock properties are revealed,which is related to the lateral rarefaction effect and the deviatoric stress produced in the specimen.According to the tests results,the modified EoS considering the size effect on the shock properties of concrete are proposed,which the bulk modulus of concrete is unpredicted by up to 20% if size effects are not accounted for. 展开更多
关键词 CONCRETE equation of state Size effect Shock wave Fly-plate impact test
下载PDF
The Jaffa Transform for Hessian Matrix Systems and the Laplace Equation
18
作者 Daniel A. Jaffa 《Journal of Applied Mathematics and Physics》 2024年第1期98-125,共28页
Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of ... Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of linear second-order partial differential equations. This paper discusses the Hessian and its applications in optimization, and then proceeds to introduce and derive the notion of the Jaffa Transform, a new linear operator that directly maps a Hessian square matrix space to the initial corresponding scalar field in nth dimensional Euclidean space. The Jaffa Transform is examined, including the properties of the operator, the transform of notable matrices, and the existence of an inverse Jaffa Transform, which is, by definition, the Hessian matrix operator. The Laplace equation is then noted and investigated, particularly, the relation of the Laplace equation to Poisson’s equation, and the theoretical applications and correlations of harmonic functions to Hessian matrices. The paper concludes by introducing and explicating the Jaffa Theorem, a principle that declares the existence of harmonic Jaffa Transforms, which are, essentially, Jaffa Transform solutions to the Laplace partial differential equation. 展开更多
关键词 Hessian Matrices Jacobian Matrices Laplace equation Linear Partial Differential equations Systems of Partial Differential equations Harmonic Functions Incompressible and Irrotational Fluid Mechanics
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部