期刊文献+
共找到20,134篇文章
< 1 2 250 >
每页显示 20 50 100
Modularized and Parametric Modeling Technology for Finite Element Simulations of Underground Engineering under Complicated Geological Conditions
1
作者 Jiaqi Wu Li Zhuo +4 位作者 Jianliang Pei Yao Li Hongqiang Xie Jiaming Wu Huaizhong Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期621-645,共25页
The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling ... The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses. 展开更多
关键词 Underground engineering modularized and parametric modeling finite element method complex geological structure cloud modeling
下载PDF
Discrete Element Modelling of Damage Evolution of Concrete Considering Meso-Structure of ITZ
2
作者 Weiliang Gao Shixu Jia +1 位作者 Tingting Zhao Zhiyong Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3495-3511,共17页
The mechanical properties of interfacial transition zones(ITZs)have traditionally been simplified by reducing the stiffness of cement in previous simulation methods.A novel approach based on the discrete element metho... The mechanical properties of interfacial transition zones(ITZs)have traditionally been simplified by reducing the stiffness of cement in previous simulation methods.A novel approach based on the discrete element method(DEM)has been developed for modeling concrete.This new approach efficiently simulates the meso-structure of ITZs,accurately capturing their heterogeneous properties.Validation against established uniaxial compression experiments confirms the precision of thismodel.The proposedmodel canmodel the process of damage evolution containing cracks initiation,propagation and penetration.Under increasing loads,cracks within ITZs progressively accumulate,culminating in macroscopic fractures that traverse themortarmatrix,forming the complex,serpentine path of cracks.This study reveals four distinct displacement patterns:tensile compliant,tensile opposite,mixed tensile-shear,and shear opposite patterns,each indicative of different stages in concrete’s damage evolution.The widening angle of these patterns delineates the progression of cracks,with the tensile compliant pattern signaling the initial crack appearance and the shear opposite pattern indicating the concrete model’s ultimate failure. 展开更多
关键词 Discrete element method damage evolution interfacial transition zone meso-structure model
下载PDF
Intelligent architecture modeling for multilevel fluvial reservoirs based on architecture interface and elements
3
作者 Bo Niu Xiangyang Hu +4 位作者 Shuijian Wei Wenbo Zheng Jie Xu Bin Liu Zhidong Bao 《Energy Geoscience》 EI 2024年第1期293-310,共18页
At present,the architecture modeling method of fluvial reservoirs are still developing.Traditional methods usually use grids to characterize architecture interbeds within the reservoir.Due to the thin thickness of thi... At present,the architecture modeling method of fluvial reservoirs are still developing.Traditional methods usually use grids to characterize architecture interbeds within the reservoir.Due to the thin thickness of this type of the interlayers,the number of the model grids must be greatly expanded.The number of grids in the tens of millions often makes an expensive computation;however,upscaling the model will generate a misleading model.The above confusion is the major reason that restricts the largescale industrialization of fluvial reservoir architecture models in oilfield development and production.Therefore,this paper explores an intelligent architecture modeling method for multilevel fluvial reservoirs based on architecture interface and element.Based on the superpositional relationship of different architectural elements within the fluvial reservoir,this method uses a combination of multilevel interface constraints and non-uniform grid techniques to build a high-resolution 3D geological model for reservoir architecture.Through the grid upscaling technology of heterogeneous architecture elements,different upscaling densities are given to the lateral-accretion bedding and lateral-accretion bodies to simplify the model gridding.This new method greatly reduces the number of model grids while ensuring the accuracy of lateral-accretion bedding models,laying a foundation for large-scale numerical simulation of the subsequent industrialization of the architecture model.This method has been validated in A layer of X oilfield with meandering fluvial channel sands as reservoirs and B layer of Y oilfield with braided river sands as reservoirs.The simulation results show that it has a higher accuracy of production history matching and remaining oil distribution forecast of the targeted sand body.The numerical simulation results show that in the actual development process of oilfield,the injected water will not displace oil in a uniform diffusive manner as traditionally assumed,but in a more complex pattern with oil in upper part of sand body being left behind as residual oil due to the influences of different levels of architecture interfaces.This investigation is important to guiding reservoir evaluation,remaining oil analysis,profile control and potential tapping and well pattern adjustment. 展开更多
关键词 Architecture modeling Interface restriction Architectural element Fluvial deposits Mid-channel bar Point bar
下载PDF
Three-dimensional Modeling of Ore-forming Elements and Mineralization Prognosis for the Yechangping Mo Deposit,Henan Province,China
4
作者 DING Gaoming JI Genyuan +5 位作者 YAN Guolong XU Yongzhong WANG Kunming XIAO Chun WANG Quanle GUO Dongbao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第3期736-752,共17页
Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-di... Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-dimensional fine interpolation,analysis of spatial distribution patterns,and extraction of quantitative mineral-seeking markers.The Yechangping molybdenum(Mo)deposit is a significant and extensive porphyry-skarn deposit in the East Qinling-Dabie Mo polymetallic metallogenic belt at the southern margin of the North China Block.Abundant borehole data on oreforming elements underpin deep geochemical predictions.The methodology includes the following steps:(1)Threedimensional geological modeling of the deposit was established.(2)Correlation,cluster,and factor analyses post delineation of mineralization stages and determination of mineral generation sequence to identify(Cu,Pb,Zn,Ag)and(Mo,W,mfe)assemblages.(3)A three-dimensional geochemical block model was constructed for Mo,W,mfe,Cu,Zn,Pb,and Ag using the ordinary kriging method,and the variational function was developed.(4)Spatial distribution and enrichment characteristics analysis of ore-forming elements are performed to extract geological information,employing the variogram and w(Cu+Pb+Zn+Ag)/w(Mo+W)as predictive indicators.(5)Identifying the western,northwestern,and southwestern areas of the mine with limited mineralization potential,contrasted by the northeastern and southeastern areas favorable for mineral exploration. 展开更多
关键词 3D geochemical model ore-forming elements GEOSTATISTICS deep mineralization prediction Yechangping Mo deposit
下载PDF
In silico optimization of actuation performance in dielectric elastomercomposites via integrated finite element modeling and deep learning
5
作者 Jiaxuan Ma Sheng Sun 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第1期48-56,共9页
Dielectric elastomers(DEs)require balanced electric actuation performance and mechanical integrity under applied voltages.Incorporating high dielectric particles as fillers provides extensive design space to optimize ... Dielectric elastomers(DEs)require balanced electric actuation performance and mechanical integrity under applied voltages.Incorporating high dielectric particles as fillers provides extensive design space to optimize concentration,morphology,and distribution for improved actuation performance and material modulus.This study presents an integrated framework combining finite element modeling(FEM)and deep learning to optimize the microstructure of DE composites.FEM first calculates actuation performance and the effective modulus across varied filler combinations,with these data used to train a convolutional neural network(CNN).Integrating the CNN into a multi-objective genetic algorithm generates designs with enhanced actuation performance and material modulus compared to the conventional optimization approach based on FEM approach within the same time.This framework harnesses artificial intelligence to navigate vast design possibilities,enabling optimized microstructures for high-performance DE composites. 展开更多
关键词 Dielectric elastomer composites Multi-objective optimization Finite element modeling Convolutional neural network
下载PDF
Multi-scale Modeling and Finite Element Analyses of Thermal Conductivity of 3D C/SiC Composites Fabricating by Flexible-Oriented Woven Process
6
作者 Zheng Sun Zhongde Shan +5 位作者 Hao Huang Dong Wang Wang Wang Jiale Liu Chenchen Tan Chaozhong Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期275-288,共14页
Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale pr... Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale proposed in this work are used to simulate the thermal conductivity behaviors of the 3D C/SiC composites.An entirely new process is introduced to weave the preform with three-dimensional orthogonal architecture.The 3D steady-state analysis step is created for assessing the thermal conductivity behaviors of the composites by applying periodic temperature boundary conditions.Three RVE models of cuboid,hexagonal and fiber random distribution are respectively developed to comparatively study the influence of fiber package pattern on the thermal conductivities at the microscale.Besides,the effect of void morphology on the thermal conductivity of the matrix is analyzed by the void/matrix models.The prediction results at the mesoscale correspond closely to the experimental values.The effect of the porosities and fiber volume fractions on the thermal conductivities is also taken into consideration.The multi-scale models mentioned in this paper can be used to predict the thermal conductivity behaviors of other composites with complex structures. 展开更多
关键词 3D C/SiC composites Finite element analyses Multi-scale modeling Thermal conductivity
下载PDF
Contribution to the Full 3D Finite Element Modelling of a Hybrid Stepping Motor with and without Current in the Coils
7
作者 Belemdara Dingamadji Hilaire Mbaïnaïbeye Jérôme Guidkaya Golam 《Journal of Electromagnetic Analysis and Applications》 2024年第2期11-23,共13页
The paper presents our contribution to the full 3D finite element modelling of a hybrid stepping motor using COMSOL Multiphysics software. This type of four-phase motor has a permanent magnet interposed between the tw... The paper presents our contribution to the full 3D finite element modelling of a hybrid stepping motor using COMSOL Multiphysics software. This type of four-phase motor has a permanent magnet interposed between the two identical and coaxial half stators. The calculation of the field with or without current in the windings (respectively with or without permanent magnet) is done using a mixed formulation with strong coupling. In addition, the local high saturation of the ferromagnetic material and the radial and axial components of the magnetic flux are taken into account. The results obtained make it possible to clearly observe, as a function of the intensity of the bus current or the remanent induction, the saturation zones, the lines, the orientations and the magnetic flux densities. 3D finite element modelling provide more accurate numerical data on the magnetic field through multiphysics analysis. This analysis considers the actual operating conditions and leads to the design of an optimized machine structure, with or without current in the windings and/or permanent magnet. 展开更多
关键词 modelLING 3D Finite elements Magnetic Flux Hybrid Stepping Motor
下载PDF
Study on hot deformation behavior of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy using a combination of strain-compensated Arrhenius constitutive model and finite element simulation method 被引量:2
8
作者 Li Hu Mengwei Lang +4 位作者 Laixin Shi Mingao Li Tao Zhou Chengli Bao Mingbo Yang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期1016-1028,共13页
Isothermal hot compression experiments were conducted on homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy to investigate hot deformation behavior at the temperature range of 673-773 K and the strain rate range of 0.001-1 s... Isothermal hot compression experiments were conducted on homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy to investigate hot deformation behavior at the temperature range of 673-773 K and the strain rate range of 0.001-1 s^(-1)by using a Gleeble-1500D thermo mechanical simulator.Metallographic characterization on samples deformed to true strain of 0.70 illustrates the occurrence of flow localization and/or microcrack at deformation conditions of 673 K/0.01 s^(-1),673 K/1 s^(-1)and 698 K/1 s^(-1),indicating that these three deformation conditions should be excluded during hot working of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy.Based on the measured true stress-strain data,the strain-compensated Arrhenius constitutive model was constructed and then incorporated into UHARD subroutine of ABAQUS software to study hot deformation process of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy.By comparison with measured force-displacement curves,the predicted results can describe well the rheological behavior of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy,verifying the validity of finite element simulation of hot compression process with this complicated constitutive model.Numerical results demonstrate that the distribution of values of material parameters(α,n,Q and ln A)within deformed sample is inhomogeneous.This issue is directly correlated to the uneven distribution of equivalent plastic strain due to the friction effect.Moreover,at a given temperature the increase of strain rate would result in the decrease of equivalent plastic strain within the central region of deformed sample,which hinders the occurrence of dynamic recrystallization(DRX). 展开更多
关键词 Mg-RE-Zn alloy Hot deformation Microstructure evolution Constitutive model Finite element simulation
下载PDF
An ultrasound-guided percutaneous electrical nerve stimulation regimen devised using finite element modeling promotes functional recovery after median nerve transection 被引量:3
9
作者 Xiao-Lei Chu Xi-Zi Song +5 位作者 Yu-Ru Li Zi-Ren Wu Qi Li Qing-Wen Li Xiao-Song Gu Dong Ming 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期683-688,共6页
Percutaneous electrical nerve stimulation of an injured nerve can promote and accelerate peripheral nerve regeneration and improve function.When performing acupuncture and moxibustion,locating the injured nerve using ... Percutaneous electrical nerve stimulation of an injured nerve can promote and accelerate peripheral nerve regeneration and improve function.When performing acupuncture and moxibustion,locating the injured nerve using ultrasound before percutaneous nerve stimulation can help prevent further injury to an already injured nerve.However,stimulation parameters have not been standardized.In this study,we constructed a multi-layer human forearm model using finite element modeling.Taking current density and activated function as optimization indicators,the optimal percutaneous nerve stimulation parameters were established.The optimal parameters were parallel placement located 3 cm apart with the injury site at the midpoint between the needles.To validate the efficacy of this regimen,we performed a randomized controlled trial in 23 patients with median nerve transection who underwent neurorrhaphy.Patients who received conventional rehabilitation combined with percutaneous electrical nerve stimulation experienced greater improvement in sensory function,motor function,and grip strength than those who received conventional rehabilitation combined with transcutaneous electrical nerve stimulation.These findings suggest that the percutaneous electrical nerve stimulation regimen established in this study can improve global median nerve function in patients with median nerve transection. 展开更多
关键词 finite element modeling median nerve transection nerve regeneration NEUROREHABILITATION percutaneous electrical nerve stimulation peripheral nerve injury randomized controlled trial
下载PDF
Finite Element Simulation of Radial Tire Building and Shaping Processes Using an Elasto-Viscoplastic Model 被引量:1
10
作者 Yinlong Wang Zhao Li +1 位作者 Ziran Li Yang Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期1187-1208,共22页
The comprehensive tire building and shaping processes are investigated through the finite element method(FEM)in this article.The mechanical properties of the uncured rubber from different tire components are investiga... The comprehensive tire building and shaping processes are investigated through the finite element method(FEM)in this article.The mechanical properties of the uncured rubber from different tire components are investigated through cyclic loading-unloading experiments under different strain rates.Based on the experiments,an elastoviscoplastic constitutive model is adopted to describe themechanical behaviors of the uncured rubber.The distinct mechanical properties,including the stress level,hysteresis and residual strain,of the uncured rubber can all be well characterized.The whole tire building process(including component winding,rubber bladder inflation,component stitching and carcass band folding-back)and the shaping process are simulated using this constitutive model.The simulated green tire profile is in good agreement with the actual profile obtained through 3D scanning.The deformation and stress of the rubber components and the cord reinforcements during production can be obtained fromthe FE simulation,which is helpful for judging the rationality of the tire construction design.Finally,the influence of the parameter“drum width”is investigated,and the simulated result is found to be consistent with the experimental observations,which verifies the effectiveness of the simulation.The established simulation strategy provides some guiding significance for the improvement of tire design parameters and the elimination of tire production defects. 展开更多
关键词 Uncured rubber constitutive modeling radial tire building process finite element method
下载PDF
Finite Element Implementation of the Exponential Drucker-Prager Plasticity Model for Adhesive Joints
11
作者 Kerati Suwanpakpraek Baramee Patamaprohm +1 位作者 Sacharuck Pornpeerakeat Arisara Chaikittiratana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期1765-1778,共14页
This paper deals with the numerical implementation of the exponential Drucker-Parger plasticitymodel in the commercial finite element software,ABAQUS,via user subroutine UMAT for adhesive joint simulations.The influen... This paper deals with the numerical implementation of the exponential Drucker-Parger plasticitymodel in the commercial finite element software,ABAQUS,via user subroutine UMAT for adhesive joint simulations.The influence of hydrostatic pressure on adhesive strength was investigated by a modified Arcan fixture designed particularly to induce a different state of hydrostatic pressure within an adhesive layer.The developed user subroutine UMAT,which utilizes an associated plastic flow during a plastic deformation,can provide a good agreement between the simulations and the experimental data.Better numerical stability at highly positive hydrostatic pressure loads for a very high order of exponential function can also be achieved compared to when a non-associated flow is used. 展开更多
关键词 Exponential Drucker-Prager model modified-Arcan test finite element analysis plastic potential function
下载PDF
Introduction to Mesh Based Generated Lumped Parameter Models for Electromagnetic Problems using Triangular Elements
12
作者 Haidar Y.Diab Salim Asfirane +2 位作者 Nicolas Bracikowski Frédéric Gillon Yacine Amara 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第1期21-34,共14页
This paper is an introduction to mesh based generated reluctance network modeling using triangular elements.Many contributions on mesh based generated reluctance networks using rectangular shaped elements have been pu... This paper is an introduction to mesh based generated reluctance network modeling using triangular elements.Many contributions on mesh based generated reluctance networks using rectangular shaped elements have been published,but very few on those generated from a mesh using triangular elements.The use of triangular elements is aimed at extending the application of the approach to any shape of modeled devices.Basic concepts of the approach are presented in the case of electromagnetic devices.The procedure for coding the approach in the case of a flat linear permanent magnet machine is presented.Codes developed under MATLAB environment are also included. 展开更多
关键词 Lumped parameter modeling Finite element method MESH Triangular elements Electromagnetic devices modelING
下载PDF
A Modified Model for Soil–Structure Interface Considering Random Damage of Mesoscopic Contact Elements
13
作者 KE Li-jun GAO Yu-feng +2 位作者 ZHAO Zi-hao LI Da-yong JI Jian 《China Ocean Engineering》 SCIE EI CSCD 2023年第5期807-818,共12页
The interaction between soil and marine structures like submarine pipeline/pipe pile/suction caisson is a complicated geotechnical mechanism process.In this study,the interface is discretized into multiple mesoscopic ... The interaction between soil and marine structures like submarine pipeline/pipe pile/suction caisson is a complicated geotechnical mechanism process.In this study,the interface is discretized into multiple mesoscopic contact elements that are damaged randomly throughout the shearing process due to the natural heterogeneity.The evolution equation of damage variable is developed based on the Weibull function,which is able to cover a rather wide range of distribution shapes by only two parameters,making it applicable for varying scenarios.Accordingly,a statistical damage model is established by incorporating Mohr–Coulomb strength criterion,in which the interfacial residual strength is considered whereby the strain softening behavior can be described.A concept of“semi-softening”characteristic point on shear stress–displacement curve is proposed for effectively modeling the evolution of strain softening.Finally,a series of ring shear tests of the interfaces between fine sea sand and smooth/rough steel surfaces are conducted.The predicted results using the proposed model are compared with experimental data of this study as well as some results from existing literature,indicating that the model has a good performance in modeling the progressive failure and strain softening behavior for various types of soil–structure interfaces. 展开更多
关键词 soil–structure interface statistical damage model mesoscopic element Weibull function “semi-softening”characteristic point
下载PDF
A rigid-flexible coupling finite element model of coupler for analyzing train instability behavior during collision
14
作者 Jingke Zhang Tao Zhu +5 位作者 Bing Yang Xiaorui Wang Shoune Xiao Guangwu Yang Yanwen Liu Quanwei Che 《Railway Engineering Science》 2023年第4期325-339,共15页
Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of ... Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of car body structure damage and train derailment will increase.Herein,a four-stage rigid-flexible coupling finite element model of the coupler is established considering the coupler buckling load.The influence of the coupler buckling load on the train longitudinal-vertical-hori-zontal buckling behavior was studied,and the mechanism of the train horizontal buckling instability in train collisions was revealed.Analysis results show that an intermediate coupler should be designed to ensure that the actual buckling load is less than the compressive load when the car body structure begins to deform plastically.The actual buckling load of the coupler and the asymmetry of the structural strength of the car body in the lateral direction are two important influencing factors for the lateral buckling of a train collision.If the strength of the two sides of the car body structure in the lateral direction is asymmetrical,the deformation on the weaker side will be larger,and the end of the car body will begin to deflect under the action of the coupler force,which in turn causes the train to undergo sawtooth buckling. 展开更多
关键词 Intermediate coupler Rigid-flexible coupling finite element model Design buckling load Actual buckling load Lateral buckling instability
下载PDF
Behaviour of non-ballast pre-stressed and precast track structures in high speed railway based on multiscale finite element model
15
作者 Yuhang Wang Jjun Wang +2 位作者 Qi Tang Jike Tan Guobing Lu 《High-Speed Railway》 2023年第1期70-85,共16页
In order to make further study on the mechanical property of CRTSIII type slab non-ballast track structures,which was self-designed in China,based on the method of the multiscale finite element model(FEM),the traditio... In order to make further study on the mechanical property of CRTSIII type slab non-ballast track structures,which was self-designed in China,based on the method of the multiscale finite element model(FEM),the traditional FEM of slab non-ballast track structures was improved.The multiscale FEM of CRTSII type slab nonballast track structures was established based on the general finite element program ABAQUs.Then the comparative calculation was made between various FEMs,showing that the high solution precision,fast modelling speed and high solution efficiency could be obtained.Therefore,the multiscale FEM was suitable for the parametric study on mechanical behaviour of CRTSII type slab non-ballast track structures,and then the key influence factor and constructions could be optimized. 展开更多
关键词 High speed railway Non-ballast track Multiscale Finite element model
下载PDF
Development and Application of a Power Law Constitutive Model for Eddy Current Dampers
16
作者 Longteng Liang Zhouquan Feng +2 位作者 Hongyi Zhang Zhengqing Chen Changzhao Qian 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2403-2419,共17页
Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to theirexceptional damping performance and durability. However, the existing constitutive models present challenges tot... Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to theirexceptional damping performance and durability. However, the existing constitutive models present challenges tothe widespread implementation of ECD technology, and there is limited availability of finite element analysis (FEA)software capable of accurately modeling the behavior of ECDs. This study addresses these issues by developing anewconstitutivemodel that is both easily understandable and user-friendly for FEAsoftware. By utilizing numericalresults obtained from electromagnetic FEA, a novel power law constitutive model is proposed to capture thenonlinear behavior of ECDs. The effectiveness of the power law constitutive model is validated throughmechanicalproperty tests and numerical seismic analysis. Furthermore, a detailed description of the application process ofthe power law constitutive model in ANSYS FEA software is provided. To facilitate the preliminary design ofECDs, an analytical derivation of energy dissipation and parameter optimization for ECDs under harmonicmotionis performed. The results demonstrate that the power law constitutive model serves as a viable alternative forconducting dynamic analysis using FEA and optimizing parameters for ECDs. 展开更多
关键词 Eddy current damper constitutive model finite element analysis vibration control power law constitutive model
下载PDF
Novel damage constitutive models and new quantitative identification method for stress thresholds of rocks under uniaxial compression
17
作者 DU Kun YI Yang +3 位作者 LUO Xin-yao LIU Kai LI Peng WANG Shao-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2658-2675,共18页
Four key stress thresholds exist in the compression process of rocks,i.e.,crack closure stress(σ_(cc)),crack initiation stress(σ_(ci)),crack damage stress(σ_(cd))and compressive strength(σ_(c)).The quantitative id... Four key stress thresholds exist in the compression process of rocks,i.e.,crack closure stress(σ_(cc)),crack initiation stress(σ_(ci)),crack damage stress(σ_(cd))and compressive strength(σ_(c)).The quantitative identifications of the first three stress thresholds are of great significance for characterizing the microcrack growth and damage evolution of rocks under compression.In this paper,a new method based on damage constitutive model is proposed to quantitatively measure the stress thresholds of rocks.Firstly,two different damage constitutive models were constructed based on acoustic emission(AE)counts and Weibull distribution function considering the compaction stages of the rock and the bearing capacity of the damage element.Then,the accumulative AE counts method(ACLM),AE count rate method(CRM)and constitutive model method(CMM)were introduced to determine the stress thresholds of rocks.Finally,the stress thresholds of 9 different rocks were identified by ACLM,CRM,and CMM.The results show that the theoretical stress−strain curves obtained from the two damage constitutive models are in good agreement with that of the experimental data,and the differences between the two damage constitutive models mainly come from the evolutionary differences of the damage variables.The results of the stress thresholds identified by the CMM are in good agreement with those identified by the AE methods,i.e.,ACLM and CRM.Therefore,the proposed CMM can be used to determine the stress thresholds of rocks. 展开更多
关键词 stress threshold acoustic emission damage constitutive model damage element quantitative method
下载PDF
Numerical analysis of high‑speed railway slab tracks using calibrated and validated 3D time‑domain modelling
18
作者 A.F.Esen O.Laghrouche +4 位作者 P.K.Woodward D.Medina‑Pineda Q.Corbisez J.Y.Shih D.P.Connolly 《Railway Engineering Science》 EI 2024年第1期36-58,共23页
Concrete slabs are widely used in modern railways to increase the inherent resilient quality of the tracks,provide safe and smooth rides,and reduce the maintenance frequency.In this paper,the elastic performance of a ... Concrete slabs are widely used in modern railways to increase the inherent resilient quality of the tracks,provide safe and smooth rides,and reduce the maintenance frequency.In this paper,the elastic performance of a novel slab trackform for high-speed railways is investigated using three-dimensional finite element modelling in Abaqus.It is then compared to the performance of a ballasted track.First,slab and ballasted track models are developed to replicate the full-scale testing of track sections.Once the models are calibrated with the experimental results,the novel slab model is developed and compared against the calibrated slab track results.The slab and ballasted track models are then extended to create linear dynamic models,considering the track geodynamics,and simulating train passages at various speeds,for which the Ledsgard documented case was used to validate the models.Trains travelling at low and high speeds are analysed to investigate the track deflections and the wave propagation in the soil,considering the issues associated with critical speeds.Various train loading methods are discussed,and the most practical approach is retained and described.Moreover,correlations are made between the geotechnical parameters of modern high-speed rail and conventional standards.It is found that considering the same ground condition,the slab track deflections are considerably smaller than those of the ballasted track at high speeds,while they show similar behaviour at low speeds. 展开更多
关键词 High-speed railways Slab track New ballastless track Ballasted track Critical speeds Finite element modelling Calibration of numerical models
下载PDF
Systematic Elastostatic Stiffness Model of Over-Constrained Parallel Manipulators Without Additional Constraint Equations
19
作者 Chao Yang Wenyong Yu +2 位作者 Wei Ye Qiaohong Chen Fengli Huang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期258-276,共19页
The establishment of an elastostatic stiffness model for over constrained parallel manipulators(PMs),particularly those with over constrained subclosed loops,poses a challenge while ensuring numerical stability.This s... The establishment of an elastostatic stiffness model for over constrained parallel manipulators(PMs),particularly those with over constrained subclosed loops,poses a challenge while ensuring numerical stability.This study addresses this issue by proposing a systematic elastostatic stiffness model based on matrix structural analysis(MSA)and independent displacement coordinates(IDCs)extraction techniques.To begin,the closed-loop PM is transformed into an open-loop PM by eliminating constraints.A subassembly element is then introduced,which considers the flexibility of both rods and joints.This approach helps circumvent the numerical instability typically encountered with traditional constraint equations.The IDCs and analytical constraint equations of nodes constrained by various joints are summarized in the appendix,utilizing multipoint constraint theory and singularity analysis,all unified within a single coordinate frame.Subsequently,the open-loop mechanism is efficiently closed by referencing the constraint equations presented in the appendix,alongside its elastostatic model.The proposed method proves to be both modeling and computationally efficient due to the comprehensive summary of the constraint equations in the Appendix,eliminating the need for additional equations.An example utilizing an over constrained subclosed loops demonstrate the application of the proposed method.In conclusion,the model proposed in this study enriches the theory of elastostatic stiffness modeling of PMs and provides an effective solution for stiffness modeling challenges they present. 展开更多
关键词 Parallel manipulator Elastostatic stiffness model Matrix structural analysis Subassembly element Independent displacement coordinates
下载PDF
Nonlinear constitutive models of rock structural plane and their applications
20
作者 Wenlin Feng Shuangjian Niu +1 位作者 Chunsheng Qiao Dujian Zou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期790-806,共17页
Structural planes play an important role in controlling the stability of rock engineering,and the influence of structural planes should be considered in the design and construction process of rock engineering.In this ... Structural planes play an important role in controlling the stability of rock engineering,and the influence of structural planes should be considered in the design and construction process of rock engineering.In this paper,mechanical properties,constitutive theory,and numerical application of structural plane are studied by a combination method of laboratory tests,theoretical derivation,and program development.The test results reveal the change laws of various mechanical parameters under different roughness and normal stress.At the pre-peak stage,a non-stationary model of shear stiffness is established,and threedimensional empirical prediction models for initial shear stiffness and residual stage roughness are proposed.The nonlinear constitutive models are established based on elasto-plastic mechanics,and the algorithms of the models are developed based on the return mapping algorithm.According to a large number of statistical analysis results,empirical prediction models are proposed for model parameters expressed by structural plane characteristic parameters.Finally,the discrete element method(DEM)is chosen to embed the constitutive models for practical application.The running programs of the constitutive models have been compiled into the discrete element model library.The comparison results between the proposed model and the Mohr-Coulomb slip model show that the proposed model can better describe nonlinear changes at different stages,and the predicted shear strength,peak strain and shear stiffness are closer to the test results.The research results of the paper are conducive to the accurate evaluation of structural plane in rock engineering. 展开更多
关键词 Structural plane Engineering stability ROUGHNESS Normal stress Elasto-plastic constitutive model Discrete element method
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部