The finite element method (FEM) is introduced to calculate the oil film pressure and temperature distribution of a journal bearing. The perturbation is performed directly on the finite element equation. Consequently...The finite element method (FEM) is introduced to calculate the oil film pressure and temperature distribution of a journal bearing. The perturbation is performed directly on the finite element equation. Consequently, the Jacobian matrices of the oil film forces are concisely obtained. The equilibrium position of the bearing with a given static load is found by the Newton-Raphson method. As byproducts, dynamic coefficients are obtained simultaneously without any extra computing time. From the numerical results, it is concluded that the effects of film temperature on stiffness coefficients are bigger than those on damping coefficients. With the increase of rotational speed, the load capacity and the stiffness coefficients of the journal bearing are increased when the eccentricity is small, while decreased when the eccentricity is big.展开更多
Friction and lubrication simulation analysis of internal combustion engine bearings are studied. A series of software implementary precepts for mathematical modeling, to analytic calculating and realizing simulation o...Friction and lubrication simulation analysis of internal combustion engine bearings are studied. A series of software implementary precepts for mathematical modeling, to analytic calculating and realizing simulation outcome are brought forward. As a dynamic simulating technique is introduced into the process of engine bearing design, simulation models of the oil film are built and the emulational analysis of the shaft center track is carried out. A software program package “Engine Bearing Friction and Lubrication Dynamic Simulation System” is developed to realize the real time simulation of the working status of bearing during the design process. Through developing virtualized products, the defects of the product design can be found in time and improve the products at once. Thus the purpose of predicting and controlling the cost, quality and design period of the products can be achieved.展开更多
In order to more accurately predict the contact fatigue life of rolling bearing, a prediction method of fatigue life of rolling bearing is proposed based on elastohydrodynamic lubrication (EHL), the 3-paameter Weibu...In order to more accurately predict the contact fatigue life of rolling bearing, a prediction method of fatigue life of rolling bearing is proposed based on elastohydrodynamic lubrication (EHL), the 3-paameter Weibull distribution ad fatigue strength. First,the contact stress considering elliptical EHL is obtained by mapping film pressure onto the Hertz zone. Then,the basic strength model of rolling bearing based on the 3-parameter Weibull distribution is deduced by the series connection reliability theory. Considering the effect of the type of stress, variation of shape and fuctuation of load, the mathematical models of the 尸 -tS-TV curve of the minimum life and the characteristic life for rolling bearing are established, respectively, and thus the prediction model of fatigue life of rolling bearing based on the 3-paameter Weibull distribution and fatigue strength is further deduced. Finally, the contact fatigue life obtained by the proposed method ad the latest international standard (IS0281: 2007) about the fatigue life prediction of rolling bearing are compared with those obtained by the statistical method. Results show that the proposed prediction method is effective and its relative error is smaier than that of the latest international standard (IS0281: 2007) with reliability R 〉 0. 93.展开更多
The water-lubricated bearings are usually the state of turbulent cavitating flow under high-speed conditions. And the distribution of cavitation bubbles and the interface effect between the two phases have not been in...The water-lubricated bearings are usually the state of turbulent cavitating flow under high-speed conditions. And the distribution of cavitation bubbles and the interface effect between the two phases have not been included in previous studies on high-speed water-lubricated bearings. In order to study the influence of interface effect and cavitation bubble distribution on the dynamic characteristics of high-speed water-lubricated spiral groove thrust bearings(SGTB).A turbulent cavitating flow lubrication model based on two-phase fluid and population balance equation of bubbles was established in this paper. Stiffness and the damping coefficients of the SGTB were calculated using the perturbation pressure equations. An experimental apparatus was developed to verify the theoretical model. Simulating and experimental results show that the small-sized bubbles tend to generate in the turbulent cavitating flow when at a high rotary speed, and the bubbles mainly locate at the edges of the spiral groove. The simulating results also show that the direct stiffness coefficients are increased due to cavitation effect, and cross stiffness coefficients and damping coefficients are hardly affected by the cavitation effect. Turbulent effect on the dynamic characteristics of SGTB is much stronger than the cavitating effect.展开更多
The purpose of this paper is to present a comparison of numerical calculations and experiment results of optical interferometry in finite line contact for the elastohydrodynamic lubrication(EHL) problem of Lundberg&...The purpose of this paper is to present a comparison of numerical calculations and experiment results of optical interferometry in finite line contact for the elastohydrodynamic lubrication(EHL) problem of Lundberg's profiled cylindrical roller under the conditions of flooded state, moderate load and material parameter. It shows clearly the effects of crowning value on the variations of oil film shape and thickness. The agreement between numerical analysis and experiment results is very good. The results indicate there must be an optimum crowning value that will induce the thickest and most even oil film in EHL state for a given working condition, and this value is larger than the design value in dry contact state for the same working conditions.展开更多
In order to confirm the early failure cause of a four-row cylindrical roller bearing at the backup roll position of a six-high cold sheet mill, its lubrication behavior under harsh operating conditions is investigated...In order to confirm the early failure cause of a four-row cylindrical roller bearing at the backup roll position of a six-high cold sheet mill, its lubrication behavior under harsh operating conditions is investigated. Through establishing and solving the Elastohydrodynamic Lubrication (EHL) model of the roller-inner raceway contact region, the minimum oil film thickness and the real lubrication performance are achieved. The results show the bearing failures come from the poor oil film thickness in the case of high temperature and low rotational speed, which leads to contact wear. So various approaches to improve bearing life via improving lubrication are compared. It has been proved decreasing surface roughness of both contact bodies is an effective way.展开更多
The purpose of the present study is to establish a mixed lubrication model for the journal-thrust coupled microgroove bearings(also referred as coupled bearings)used for the ship shaftless rim-driven thrusters.During ...The purpose of the present study is to establish a mixed lubrication model for the journal-thrust coupled microgroove bearings(also referred as coupled bearings)used for the ship shaftless rim-driven thrusters.During the hydrodynamic modelling,the coupling hydrodynamic pressure between the journal bearing and the thrust bearing is considered.The mixed lubrication performances of the microgroove journal-thrust bearing with five different bottom shapes,including rectangle,semi-ellipse,right triangle,isosceles triangle and left triangle,are compared.Based on the numerical results,the optimal microgroove bottom shape of the journal bearing and tilting angle of the thrust pad are determined.Additionally,the comparative analysis shows that the coupled bearing with left triangle microgroove bottom shape exhibits the optimal mixed lubrication performance.The numerical result also indicates that the optimal inclination angle of the thrust bearing pad is 0.01°for the current simulation case.展开更多
The failure rate of crankpin bearing bush of diesel engine under complex working conditions such as high temperature,dynamic load and variable speed is high.After serious wear,it is easy to deteriorate the stress stat...The failure rate of crankpin bearing bush of diesel engine under complex working conditions such as high temperature,dynamic load and variable speed is high.After serious wear,it is easy to deteriorate the stress state of connecting rod body and connecting rod bolt,resulting in serious accidents such as connecting rod fracture and body damage.Based on the mixed lubrication characteristics of connecting rod big endbearing shell of diesel engine under high explosion pressure impact load,an improved mixed lubrication mechanism model is established,which considers the influence of viscoelastic micro deformation of bearing bush material,integrates the full film lubrication model and dry friction model,couples dynamic equation of connecting rod.Then the actual lubrication state of big end bearing shell is simulated numerically.Further,the correctness of the theoretical research results is verified by fault simulation experiments.The results show that the high-frequency impact signal with fixed angle domain characteristics will be generated after the serious wear of bearing bush and the deterioration of lubrication state.The fault feature capture and alarm can be realized through the condition monitoring system,which can be applied to the fault monitoring of connecting rod bearing bush of diesel engine in the future.展开更多
Taking bump-type gas foil bearings as the research object,a deformation model of bump foil and a thin-plate finite element model of top foil were proposed.By solving Reynolds equation and energy equation,the pressure ...Taking bump-type gas foil bearings as the research object,a deformation model of bump foil and a thin-plate finite element model of top foil were proposed.By solving Reynolds equation and energy equation,the pressure distribution and the temperature distribution of gas films in foil bearings were obtained.Further,a numerical method for calculating the lubrication performance of gas foil bearings with considering the surface roughness was proposed.With a specific example,effects of the surface roughness on the bearing lubrication performance were parametrically studied.The results indicate that rougher journal surface can lead to larger fluctuation of the lubrication performance,while surface roughness of top foil has few effects on the fluctuation.Moreover,the mean values of performance parameters almost remain constant at different values of surface roughness.展开更多
The purpose is to accurately predict the performance of foil bearing and achieve accurate results in the design of foil bearing structure.A new type of foil bearing with surface microstructure is used as experimental ...The purpose is to accurately predict the performance of foil bearing and achieve accurate results in the design of foil bearing structure.A new type of foil bearing with surface microstructure is used as experimental material.First,the lubrication mechanism of elastic foil gas bearing is analyzed.Then,the numerical solution process of the static bearing capacity and friction torque is analyzed,including the discretization of the governing equation of rarefied gas pressure based on the non-dimensional modified Reynolds equation and the over relaxation iteration method,the grid planning within the calculation range,the static solution of boundary parameters and static solution of the numerical process.Finally,the solution program is analyzed.The experimental data in National Aeronautics and Space Administration(NASA)public literature are compared with the simulation results of this exploration,so as to judge the accuracy of the calculation process.The results show that under the same static load,the difference between the minimum film thickness calculated and the test results is not obvious;when the rotor speed of the bearing is 60000 r/min,the influence of the boundary slip effect increases with the increase of the micro groove depth on the flat foil surface;when the eccentricity or the micro groove depth of the bearing increases,the bearing capacity will be strengthened.When the eccentricity is 6µm and 14µm,the viscous friction torque of the new foil bearing increases significantly with the increase of the depth of the foil micro groove,but when the eccentricity is 22µm,the viscous friction torque does not change with the change of the depth of the foil micro groove.It shows that the bearing capacity and performance of foil bearing are improved.展开更多
Lubrication media of rock bit journal bearing is non-Newtonian fluid, and because of structure limitations, lubricant supply is only from the inside track and its rheological properties are relatively complex. In gene...Lubrication media of rock bit journal bearing is non-Newtonian fluid, and because of structure limitations, lubricant supply is only from the inside track and its rheological properties are relatively complex. In general studies, the non- Newtonianism of lubrication media of rock bit journal bearing is neglected to simplify the research process. Based on the universal Reynolds equation of non-Newton media, the mathematical model of lubrication analysis was suitable for the rock bit bearing working conditions was established. Then according to the experimental results of rheological properties of RB-type lubricating grease, the equivalent viscosity of the model was established and this model can be solved by the method used in solving the Reynolds equation of Newton fluid.展开更多
In this article, 1-(4-ethylphenyl)-nonane-1,3-dione(0206) was prepared by Claisen condensation. By mixing 0206, chelate, and base oil in a ratio of 3.2:4.8:2, a diketone lubricant(PAO=14(20%)) that can achieve superlu...In this article, 1-(4-ethylphenyl)-nonane-1,3-dione(0206) was prepared by Claisen condensation. By mixing 0206, chelate, and base oil in a ratio of 3.2:4.8:2, a diketone lubricant(PAO=14(20%)) that can achieve superlubricity was prepared and applied to bearing lubrication experiments. The experimental results show that when the bearing was lubricated by base oil, the friction coefficient(COF) and temperature rise decreased with the decrease of the viscosity of PAO. When PAO=14(20%) was used as the lubricant, the COF of the bearing was the lowest(0.001), and the wear morphology was comparable to that of the bearing lubricated with commercial lubricant. Compared with the base oil with the same viscosity, it is found that the COF and temperature rise of the bearing lubricated by PAO=14(20%) were lower under any experimental conditions. And when the amount of lubricant added was 10 μL, the COF of the bearing lubricated by PAO=14(20%) reached a very low value(0.0004).Bearing ball surface analysis identified the formation of diketone adsorption films. Combined with the previous PAO=14(20%)superlubricity mechanism, it was considered that the occurrence of tribochemical reaction and the bearing effect of chelates were the main reasons for the existence of ultra-low friction coefficient and low wear. In addition, when there were polar molecules in the lubricant, they were adsorbed on the metal surface through tribochemical reactions, resulting in many irregular pits on the surface.展开更多
Only the lubrication performance at rated engine operating condition was generally analyzed in current design and research of engine connecting-rod and main bearing. However, the actual engine(especially vehicle engin...Only the lubrication performance at rated engine operating condition was generally analyzed in current design and research of engine connecting-rod and main bearing. However, the actual engine(especially vehicle engine) does not always operate in rated operating condition and its operating condition changes constantly. In this paper, a fourstroke four-cylinder engine is taken as the studying object, the load and lubrication of connecting-rod and main bearing in di erent operating conditions are analyzed. The load of connecting-rod bearing is calculated by the dynamic calculation method, the loads of all main bearings are calculated by the whole crankshaft beam-element finite element method, and the lubrication performance of connecting-rod and main bearings are analyzed by the dynamic method. The results show that there are major di erences in the changes and numerical value at corresponding moment of the loads and lubrication performance of connecting-rod and main bearings in an engine operating cycle in di erent engine operating conditions; the most unfavorable case of the lubrication performance of connectingrod and main bearings may not take place in the rated engine operating condition. There are also major di erences between the lubrication performance of connecting-rod bearing and that of main bearing and between the lubrication performances of main bearings one another. Therefore, it will not be reasonable that the lubrication performance of a certain connecting-rod bearing or main bearing is analyzed in the design of the engine bearing. It is necessary to analyze simultaneously the lubrication performances of all bearings in di erent engine operating conditions.展开更多
Modelling of migration and accumulation of elements Au and Ag in rocks under temperatures of 350–450°C and a confining pressure of 300 MPa and axial pressure of 100–150 MPa is conducted. It is found that the co...Modelling of migration and accumulation of elements Au and Ag in rocks under temperatures of 350–450°C and a confining pressure of 300 MPa and axial pressure of 100–150 MPa is conducted. It is found that the contents of gold and silver get higher in metallic sulphides such as pyrite, chalcopyrite and sphalerite as well as in quartz and muscovite, and get lower in chlorite, biotite, seriate, albite and calcite, showing that tectono-dynamics is one of the important factors for petrogenesis and metallogenesis.展开更多
Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power ge...Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power generation.In all these applications,the equipment must deliver extreme working performances such as ultraprecise movement,ultrahigh rotation speed,ultraheavy bearing loads,ultrahigh environmental temperatures,strong radiation resistance,and high vacuum operation,which have challenged the design and optimization of reliable fluid lubricated bearings.Breakthrough of any related bottlenecks will promote the development course of high-end equipment.To promote the advancement of high-end equipment,this paper reviews the design and optimization of fluid lubricated bearings operated at typical extreme working performances,targeting the realization of extreme working performances,current challenges and solutions,underlying deficiencies,and promising developmental directions.This paper can guide the selection of suitable fluid lubricated bearings and optimize their structures to meet their required working performances.展开更多
The thermal elastic hydro dynamic (TEHD) lubrication analysis for the thrust bearing is usually conducted by combining Reynolds equation with finite element analysis (FEA). But it is still a problem to conduct the...The thermal elastic hydro dynamic (TEHD) lubrication analysis for the thrust bearing is usually conducted by combining Reynolds equation with finite element analysis (FEA). But it is still a problem to conduct the computation by combining computational fluid dynamics (CFD) and FEA which can simulate the TEHD more accurately. In this paper, by using both direct and separate coupled solutions together, steady TEHD lubrication considering the viscosity-temperature effect for a bidirectional thrust bearing in a pump-turbine unit is simulated combining a 3D CFD model for the oil film with a 3D FEA model for the pad and mirror plate. Cyclic symmetry condition is used in the oil film flow as more reasonable boundary conditions which avoids the oil temperature assumption at the leading and trailing edge. Deformations of the pad and mirror plate are predicted and discussed as well as the distributions of oil film thickness, pressure, temperature. The predicted temperature shows good agreement with measurements, while the pressure shows a reasonable distribution comparing with previous studies. Further analysis of the three-coupled-field reveals the reason of the high pressure and high temperature generated in the film. Finally, the influence of rotational speed of the mirror plate on the lubrication characteristics is illustrated which shows the thrust load should be balanced against the oil film temperature and pressure in optimized designs. This research proposes a thrust bearing computation method by combining CFD and FEA which can do the TEHD analysis more accurately.展开更多
Although aerodynamic compliant foil bearings are successfully applied in a number of turbo-machineries,theoretical researches on the modeling,performance prediction of compliant foil bearings and the dynamic analysis ...Although aerodynamic compliant foil bearings are successfully applied in a number of turbo-machineries,theoretical researches on the modeling,performance prediction of compliant foil bearings and the dynamic analysis of the related rotor system seem still far behind the experimental investigation because of structural complexity of the foil bearings.A generalized solution of the elasto-aerodynamic lubrication is presented in this paper by introducing both static and dynamic deformations of foils and solving gas-lubricated Reynolds equations with deformation equations simultaneously.The solution can be used for the calculation of dynamic stiffness and damping,as well as the prediction of static performances of foil bearings.Systematical theories and methods are also presented for the purpose of the prediction of dynamic behavior of a rotor system equipped with foil bearings.展开更多
The main theoretical turbulence models for application to hydrodynamic lubrication problems were briefly reviewed, and the course of their development and their fundamentals were explained. Predictions by these models...The main theoretical turbulence models for application to hydrodynamic lubrication problems were briefly reviewed, and the course of their development and their fundamentals were explained. Predictions by these models on flow fields in turbulent Couette flows and shear-induced countercurrent flows were compared to existing measurements, and Zhang & Zhang's combined k-ε model was shown to have surpassingly satisfactory results. The method of application of this combined k-ε model to high speed journal bearings and annular seals was summarized, and the predicted results were shown to be satisfactory by comparisons with existing experiments of journal bearings and annular seals.展开更多
The effects of surface roughness characteristics on the fluid load capacity of tilt pad thrust bearings with water lubrication were studied by the average flow model.The flow factors utilized in the average flow model...The effects of surface roughness characteristics on the fluid load capacity of tilt pad thrust bearings with water lubrication were studied by the average flow model.The flow factors utilized in the average flow model were simulated with various surface roughness parameters including skewness,kurtosis and the roughness directional pattern.The results indicated that the fluid load capacity was not only affected by the RMS roughness but also by the surface roughness characteristics.The fluid load capacity was dramatically affected by the roughness directional pattern.The skewness had a lower effect than the roughness directional pattern.The kurtosis had no notable effect on the fluid load capacity.It was possible for the fluid load capacity of the tilt pad thrust bearings to be improved by the skewness and roughness direction pattern control.展开更多
Water lubricated guide bearings for hydro turbines and pumps are conventionally designed with multiple axial grooves to provide effectively cooling and flushing away abrasives.Due to the variety of groove configuratio...Water lubricated guide bearings for hydro turbines and pumps are conventionally designed with multiple axial grooves to provide effectively cooling and flushing away abrasives.Due to the variety of groove configuration in terms of number and size,a predication of their performance is difficult.This paper deals with an analytical procedure to investigate groove effect on load capacity,stiffness and damping for this type of bearing where it is considered as an assembly of many inclined slide bearings.The result can be applied to bearings made of hard materials combined with low bearing pressure.展开更多
基金Supported by the National″111″Project(B07050)the China Postdoctoral Science Foundation(20100471634)~~
文摘The finite element method (FEM) is introduced to calculate the oil film pressure and temperature distribution of a journal bearing. The perturbation is performed directly on the finite element equation. Consequently, the Jacobian matrices of the oil film forces are concisely obtained. The equilibrium position of the bearing with a given static load is found by the Newton-Raphson method. As byproducts, dynamic coefficients are obtained simultaneously without any extra computing time. From the numerical results, it is concluded that the effects of film temperature on stiffness coefficients are bigger than those on damping coefficients. With the increase of rotational speed, the load capacity and the stiffness coefficients of the journal bearing are increased when the eccentricity is small, while decreased when the eccentricity is big.
文摘Friction and lubrication simulation analysis of internal combustion engine bearings are studied. A series of software implementary precepts for mathematical modeling, to analytic calculating and realizing simulation outcome are brought forward. As a dynamic simulating technique is introduced into the process of engine bearing design, simulation models of the oil film are built and the emulational analysis of the shaft center track is carried out. A software program package “Engine Bearing Friction and Lubrication Dynamic Simulation System” is developed to realize the real time simulation of the working status of bearing during the design process. Through developing virtualized products, the defects of the product design can be found in time and improve the products at once. Thus the purpose of predicting and controlling the cost, quality and design period of the products can be achieved.
基金The National Defense Advance Research Program(No.81302XXX)
文摘In order to more accurately predict the contact fatigue life of rolling bearing, a prediction method of fatigue life of rolling bearing is proposed based on elastohydrodynamic lubrication (EHL), the 3-paameter Weibull distribution ad fatigue strength. First,the contact stress considering elliptical EHL is obtained by mapping film pressure onto the Hertz zone. Then,the basic strength model of rolling bearing based on the 3-parameter Weibull distribution is deduced by the series connection reliability theory. Considering the effect of the type of stress, variation of shape and fuctuation of load, the mathematical models of the 尸 -tS-TV curve of the minimum life and the characteristic life for rolling bearing are established, respectively, and thus the prediction model of fatigue life of rolling bearing based on the 3-paameter Weibull distribution and fatigue strength is further deduced. Finally, the contact fatigue life obtained by the proposed method ad the latest international standard (IS0281: 2007) about the fatigue life prediction of rolling bearing are compared with those obtained by the statistical method. Results show that the proposed prediction method is effective and its relative error is smaier than that of the latest international standard (IS0281: 2007) with reliability R 〉 0. 93.
基金Supported by National Natural Science Foundation of China (Grant Nos. 51635004, 11472078)。
文摘The water-lubricated bearings are usually the state of turbulent cavitating flow under high-speed conditions. And the distribution of cavitation bubbles and the interface effect between the two phases have not been included in previous studies on high-speed water-lubricated bearings. In order to study the influence of interface effect and cavitation bubble distribution on the dynamic characteristics of high-speed water-lubricated spiral groove thrust bearings(SGTB).A turbulent cavitating flow lubrication model based on two-phase fluid and population balance equation of bubbles was established in this paper. Stiffness and the damping coefficients of the SGTB were calculated using the perturbation pressure equations. An experimental apparatus was developed to verify the theoretical model. Simulating and experimental results show that the small-sized bubbles tend to generate in the turbulent cavitating flow when at a high rotary speed, and the bubbles mainly locate at the edges of the spiral groove. The simulating results also show that the direct stiffness coefficients are increased due to cavitation effect, and cross stiffness coefficients and damping coefficients are hardly affected by the cavitation effect. Turbulent effect on the dynamic characteristics of SGTB is much stronger than the cavitating effect.
文摘The purpose of this paper is to present a comparison of numerical calculations and experiment results of optical interferometry in finite line contact for the elastohydrodynamic lubrication(EHL) problem of Lundberg's profiled cylindrical roller under the conditions of flooded state, moderate load and material parameter. It shows clearly the effects of crowning value on the variations of oil film shape and thickness. The agreement between numerical analysis and experiment results is very good. The results indicate there must be an optimum crowning value that will induce the thickest and most even oil film in EHL state for a given working condition, and this value is larger than the design value in dry contact state for the same working conditions.
基金This paper is supported by National Natural Science Fundation of China under Grant No.50405030.
文摘In order to confirm the early failure cause of a four-row cylindrical roller bearing at the backup roll position of a six-high cold sheet mill, its lubrication behavior under harsh operating conditions is investigated. Through establishing and solving the Elastohydrodynamic Lubrication (EHL) model of the roller-inner raceway contact region, the minimum oil film thickness and the real lubrication performance are achieved. The results show the bearing failures come from the poor oil film thickness in the case of high temperature and low rotational speed, which leads to contact wear. So various approaches to improve bearing life via improving lubrication are compared. It has been proved decreasing surface roughness of both contact bodies is an effective way.
基金Project(51975064)supported by the National Natural Science Foundation of ChinaProject(cstc2018jcyj AX0442)supported by the General Projects of Basic Science and Frontier Technology Research of Chongqing,China+2 种基金Projects(2018M631059,2019T120805)supported by the Postdoctoral Science Foundation of ChinaProject(cstc2017zdcyzdzx X0001)supported by the Major Research and Development Program of ChinaProject supported by the Innovation Program on the Common and Key Technologise of Key Industries,China。
文摘The purpose of the present study is to establish a mixed lubrication model for the journal-thrust coupled microgroove bearings(also referred as coupled bearings)used for the ship shaftless rim-driven thrusters.During the hydrodynamic modelling,the coupling hydrodynamic pressure between the journal bearing and the thrust bearing is considered.The mixed lubrication performances of the microgroove journal-thrust bearing with five different bottom shapes,including rectangle,semi-ellipse,right triangle,isosceles triangle and left triangle,are compared.Based on the numerical results,the optimal microgroove bottom shape of the journal bearing and tilting angle of the thrust pad are determined.Additionally,the comparative analysis shows that the coupled bearing with left triangle microgroove bottom shape exhibits the optimal mixed lubrication performance.The numerical result also indicates that the optimal inclination angle of the thrust bearing pad is 0.01°for the current simulation case.
基金Supported by the National Natural Science Foundation of China(No.52101343)the Aeronautical Science Foundation(No.201834S9002).
文摘The failure rate of crankpin bearing bush of diesel engine under complex working conditions such as high temperature,dynamic load and variable speed is high.After serious wear,it is easy to deteriorate the stress state of connecting rod body and connecting rod bolt,resulting in serious accidents such as connecting rod fracture and body damage.Based on the mixed lubrication characteristics of connecting rod big endbearing shell of diesel engine under high explosion pressure impact load,an improved mixed lubrication mechanism model is established,which considers the influence of viscoelastic micro deformation of bearing bush material,integrates the full film lubrication model and dry friction model,couples dynamic equation of connecting rod.Then the actual lubrication state of big end bearing shell is simulated numerically.Further,the correctness of the theoretical research results is verified by fault simulation experiments.The results show that the high-frequency impact signal with fixed angle domain characteristics will be generated after the serious wear of bearing bush and the deterioration of lubrication state.The fault feature capture and alarm can be realized through the condition monitoring system,which can be applied to the fault monitoring of connecting rod bearing bush of diesel engine in the future.
文摘Taking bump-type gas foil bearings as the research object,a deformation model of bump foil and a thin-plate finite element model of top foil were proposed.By solving Reynolds equation and energy equation,the pressure distribution and the temperature distribution of gas films in foil bearings were obtained.Further,a numerical method for calculating the lubrication performance of gas foil bearings with considering the surface roughness was proposed.With a specific example,effects of the surface roughness on the bearing lubrication performance were parametrically studied.The results indicate that rougher journal surface can lead to larger fluctuation of the lubrication performance,while surface roughness of top foil has few effects on the fluctuation.Moreover,the mean values of performance parameters almost remain constant at different values of surface roughness.
文摘The purpose is to accurately predict the performance of foil bearing and achieve accurate results in the design of foil bearing structure.A new type of foil bearing with surface microstructure is used as experimental material.First,the lubrication mechanism of elastic foil gas bearing is analyzed.Then,the numerical solution process of the static bearing capacity and friction torque is analyzed,including the discretization of the governing equation of rarefied gas pressure based on the non-dimensional modified Reynolds equation and the over relaxation iteration method,the grid planning within the calculation range,the static solution of boundary parameters and static solution of the numerical process.Finally,the solution program is analyzed.The experimental data in National Aeronautics and Space Administration(NASA)public literature are compared with the simulation results of this exploration,so as to judge the accuracy of the calculation process.The results show that under the same static load,the difference between the minimum film thickness calculated and the test results is not obvious;when the rotor speed of the bearing is 60000 r/min,the influence of the boundary slip effect increases with the increase of the micro groove depth on the flat foil surface;when the eccentricity or the micro groove depth of the bearing increases,the bearing capacity will be strengthened.When the eccentricity is 6µm and 14µm,the viscous friction torque of the new foil bearing increases significantly with the increase of the depth of the foil micro groove,but when the eccentricity is 22µm,the viscous friction torque does not change with the change of the depth of the foil micro groove.It shows that the bearing capacity and performance of foil bearing are improved.
文摘Lubrication media of rock bit journal bearing is non-Newtonian fluid, and because of structure limitations, lubricant supply is only from the inside track and its rheological properties are relatively complex. In general studies, the non- Newtonianism of lubrication media of rock bit journal bearing is neglected to simplify the research process. Based on the universal Reynolds equation of non-Newton media, the mathematical model of lubrication analysis was suitable for the rock bit bearing working conditions was established. Then according to the experimental results of rheological properties of RB-type lubricating grease, the equivalent viscosity of the model was established and this model can be solved by the method used in solving the Reynolds equation of Newton fluid.
基金supported by the National Key R&D Program of China (Grant No. 2020YFA0711003)the National Natural Science Foundation of China (Grant No. 51925506)the National Natural Science Foundation of China Youth Science Foundation (Grant No. 52305178)。
文摘In this article, 1-(4-ethylphenyl)-nonane-1,3-dione(0206) was prepared by Claisen condensation. By mixing 0206, chelate, and base oil in a ratio of 3.2:4.8:2, a diketone lubricant(PAO=14(20%)) that can achieve superlubricity was prepared and applied to bearing lubrication experiments. The experimental results show that when the bearing was lubricated by base oil, the friction coefficient(COF) and temperature rise decreased with the decrease of the viscosity of PAO. When PAO=14(20%) was used as the lubricant, the COF of the bearing was the lowest(0.001), and the wear morphology was comparable to that of the bearing lubricated with commercial lubricant. Compared with the base oil with the same viscosity, it is found that the COF and temperature rise of the bearing lubricated by PAO=14(20%) were lower under any experimental conditions. And when the amount of lubricant added was 10 μL, the COF of the bearing lubricated by PAO=14(20%) reached a very low value(0.0004).Bearing ball surface analysis identified the formation of diketone adsorption films. Combined with the previous PAO=14(20%)superlubricity mechanism, it was considered that the occurrence of tribochemical reaction and the bearing effect of chelates were the main reasons for the existence of ultra-low friction coefficient and low wear. In addition, when there were polar molecules in the lubricant, they were adsorbed on the metal surface through tribochemical reactions, resulting in many irregular pits on the surface.
基金Supported by Science Fund of State Key Laboratory of Engine Reliability of China(Grant No.skler-201708)National Natural Science Foundation of China(Grant No.51490660/51490661)
文摘Only the lubrication performance at rated engine operating condition was generally analyzed in current design and research of engine connecting-rod and main bearing. However, the actual engine(especially vehicle engine) does not always operate in rated operating condition and its operating condition changes constantly. In this paper, a fourstroke four-cylinder engine is taken as the studying object, the load and lubrication of connecting-rod and main bearing in di erent operating conditions are analyzed. The load of connecting-rod bearing is calculated by the dynamic calculation method, the loads of all main bearings are calculated by the whole crankshaft beam-element finite element method, and the lubrication performance of connecting-rod and main bearings are analyzed by the dynamic method. The results show that there are major di erences in the changes and numerical value at corresponding moment of the loads and lubrication performance of connecting-rod and main bearings in an engine operating cycle in di erent engine operating conditions; the most unfavorable case of the lubrication performance of connectingrod and main bearings may not take place in the rated engine operating condition. There are also major di erences between the lubrication performance of connecting-rod bearing and that of main bearing and between the lubrication performances of main bearings one another. Therefore, it will not be reasonable that the lubrication performance of a certain connecting-rod bearing or main bearing is analyzed in the design of the engine bearing. It is necessary to analyze simultaneously the lubrication performances of all bearings in di erent engine operating conditions.
文摘Modelling of migration and accumulation of elements Au and Ag in rocks under temperatures of 350–450°C and a confining pressure of 300 MPa and axial pressure of 100–150 MPa is conducted. It is found that the contents of gold and silver get higher in metallic sulphides such as pyrite, chalcopyrite and sphalerite as well as in quartz and muscovite, and get lower in chlorite, biotite, seriate, albite and calcite, showing that tectono-dynamics is one of the important factors for petrogenesis and metallogenesis.
基金supported by the National Natural Science Foundations of China under Grant Nos.52206123,52075506,52205543,52322510,52275470 and 52105129Science and Technology Planning Project of Sichuan Province under Grant No.2021YJ0557+2 种基金Natural Science Foundation of Sichuan Province under Grant No.2023NSFSC1947Presidential Foundation of China Academy of Engineering PhysicsGrant No.YZJJZQ2022009。
文摘Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power generation.In all these applications,the equipment must deliver extreme working performances such as ultraprecise movement,ultrahigh rotation speed,ultraheavy bearing loads,ultrahigh environmental temperatures,strong radiation resistance,and high vacuum operation,which have challenged the design and optimization of reliable fluid lubricated bearings.Breakthrough of any related bottlenecks will promote the development course of high-end equipment.To promote the advancement of high-end equipment,this paper reviews the design and optimization of fluid lubricated bearings operated at typical extreme working performances,targeting the realization of extreme working performances,current challenges and solutions,underlying deficiencies,and promising developmental directions.This paper can guide the selection of suitable fluid lubricated bearings and optimize their structures to meet their required working performances.
基金Supported by National Natural Science Foundation of China(Grant No.51439002)Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant Nos.20120002110011,20130002110072)Special Funds for Marine Renewable Energy Projects(Grant no.GHME2012GC02)
文摘The thermal elastic hydro dynamic (TEHD) lubrication analysis for the thrust bearing is usually conducted by combining Reynolds equation with finite element analysis (FEA). But it is still a problem to conduct the computation by combining computational fluid dynamics (CFD) and FEA which can simulate the TEHD more accurately. In this paper, by using both direct and separate coupled solutions together, steady TEHD lubrication considering the viscosity-temperature effect for a bidirectional thrust bearing in a pump-turbine unit is simulated combining a 3D CFD model for the oil film with a 3D FEA model for the pad and mirror plate. Cyclic symmetry condition is used in the oil film flow as more reasonable boundary conditions which avoids the oil temperature assumption at the leading and trailing edge. Deformations of the pad and mirror plate are predicted and discussed as well as the distributions of oil film thickness, pressure, temperature. The predicted temperature shows good agreement with measurements, while the pressure shows a reasonable distribution comparing with previous studies. Further analysis of the three-coupled-field reveals the reason of the high pressure and high temperature generated in the film. Finally, the influence of rotational speed of the mirror plate on the lubrication characteristics is illustrated which shows the thrust load should be balanced against the oil film temperature and pressure in optimized designs. This research proposes a thrust bearing computation method by combining CFD and FEA which can do the TEHD analysis more accurately.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.50275116 and 50475088)the National High-Tech Research and Development Program of China(Grant No.2002AA503020).
文摘Although aerodynamic compliant foil bearings are successfully applied in a number of turbo-machineries,theoretical researches on the modeling,performance prediction of compliant foil bearings and the dynamic analysis of the related rotor system seem still far behind the experimental investigation because of structural complexity of the foil bearings.A generalized solution of the elasto-aerodynamic lubrication is presented in this paper by introducing both static and dynamic deformations of foils and solving gas-lubricated Reynolds equations with deformation equations simultaneously.The solution can be used for the calculation of dynamic stiffness and damping,as well as the prediction of static performances of foil bearings.Systematical theories and methods are also presented for the purpose of the prediction of dynamic behavior of a rotor system equipped with foil bearings.
文摘The main theoretical turbulence models for application to hydrodynamic lubrication problems were briefly reviewed, and the course of their development and their fundamentals were explained. Predictions by these models on flow fields in turbulent Couette flows and shear-induced countercurrent flows were compared to existing measurements, and Zhang & Zhang's combined k-ε model was shown to have surpassingly satisfactory results. The method of application of this combined k-ε model to high speed journal bearings and annular seals was summarized, and the predicted results were shown to be satisfactory by comparisons with existing experiments of journal bearings and annular seals.
基金the National Basic Research Program of China (973),the National Natural Science Foundation of China
文摘The effects of surface roughness characteristics on the fluid load capacity of tilt pad thrust bearings with water lubrication were studied by the average flow model.The flow factors utilized in the average flow model were simulated with various surface roughness parameters including skewness,kurtosis and the roughness directional pattern.The results indicated that the fluid load capacity was not only affected by the RMS roughness but also by the surface roughness characteristics.The fluid load capacity was dramatically affected by the roughness directional pattern.The skewness had a lower effect than the roughness directional pattern.The kurtosis had no notable effect on the fluid load capacity.It was possible for the fluid load capacity of the tilt pad thrust bearings to be improved by the skewness and roughness direction pattern control.
文摘Water lubricated guide bearings for hydro turbines and pumps are conventionally designed with multiple axial grooves to provide effectively cooling and flushing away abrasives.Due to the variety of groove configuration in terms of number and size,a predication of their performance is difficult.This paper deals with an analytical procedure to investigate groove effect on load capacity,stiffness and damping for this type of bearing where it is considered as an assembly of many inclined slide bearings.The result can be applied to bearings made of hard materials combined with low bearing pressure.