Minerals might act as important sorbents of sedimentary organic matter and reduce biodegradation, which favors the formation of hydrocarbon source rocks in the earth's history. Since most organic matter is degraded d...Minerals might act as important sorbents of sedimentary organic matter and reduce biodegradation, which favors the formation of hydrocarbon source rocks in the earth's history. Since most organic matter is degraded during the sinking process, at ambient temperature, it is important to investigate the adsorption capacity of different minerals during this process, to assess the organic loss from primary productivity to sedimentary organic matter. In this study, montmorillonite and calcite have been selected to study the impact of different minerals on the release, adsorption, and deposition of cyanobacterial (Synechococcus elonpata) fatty acids (FAs) at ambient temperature. Gas chromatography (GC), gas chromatography-mass spectrometry (GC-MS) have been utilized to detect the variation in fatty acids. Primary results suggest that minerals have a different impact on dissolved organic matter. Montmorillonite can specifically enhance the release of fatty acids from cyanobacterial cells by lowering the pH values of the solution. The adsorption of the dissolved organic matter by montmoriilonite will also be enhanced under a lower pH value. Conjunction of fatty acids with montmoriilonite to form a complex will favor the sinking and preservation of these organics. Selective adsorption is observed among fatty acids with different carbon numbers. In contrast, calcite does not show any impact on the release and adsorption of organic matter even though it is reportedly capable of acting as a catalyst during the transformation of organic matter at high temperature. The primary data bridge a link between primary productivity and sedimentary organic matter, suggesting the relative importance of claystones in the formation of hydrocarbon source rocks in the earth's history.展开更多
Geological and geochemical studies and experiments on mineralization indicate that the source bed of the La' erma gold deposit in the south subbelt of the western Qinling Mountains is hydrothermal cherts in the Ca...Geological and geochemical studies and experiments on mineralization indicate that the source bed of the La' erma gold deposit in the south subbelt of the western Qinling Mountains is hydrothermal cherts in the Cambrian Taiyangding Group. Organic geochemical study of the cherts shows that the organic precursors intimately associated with gold are marine bacteria and algae. The gold content in chert,is positively correlated with the amount of bacterial and algal microfossils, and simulation experiments on biomineralization of modern bacteria and algae indicate that bacteria and algae played an important role in the formation of the La' erma gold deposit.展开更多
Based on the new material of seven Ordovician-Silurian boundary sections investigated recently, together with previously published data, we analyze the temporal and spatial distributions of the Lungmachi black shales,...Based on the new material of seven Ordovician-Silurian boundary sections investigated recently, together with previously published data, we analyze the temporal and spatial distributions of the Lungmachi black shales, a key petroleum source bed widely distributed in South China. The Lungmachi black shales range in age from the Normalograptus persculptus Biozone of the uppermost Ordovician to the Spirograptus guerichi Biozone of the lower Telychian, and ten graptolite biozones can be recognized within this unit. The basal and upper contacts of the Lungmachi black shales are diachronous. The basal contact ranges from the N. persculptus to the C. cyphus biozones, a span of five graptolite biozones over two stages. The upper contact ranges from the D. pectinatus-M. argenteus Biozone to the Spirograptus guerichi Biozone, which spans four graptolite biozones over two stages. The Yichang Uplift resulted in the formation of the Hunan-Hubei Submarine High in the border area of Hubei, Hunan, and Chongqing. This is supported by a break in sedimentation in this area spanning all or part of the Hirnantian, and in many areas extending into the underlying Katian and overlying Rhuddanian. Comparison of the distribution of the Katian to Rhuddanian strata in this area indicates a growth and subsequent reduction in area of the Hunan-Hubei Submarine High particularly in the Hirnantian to early Rhuddanian. This may partly represent the influence of the process of formation and melting of ice sheet in Ordovician South Pole and consequent sea level change.展开更多
基金supported by the SINOPEC project (G0800-06-ZS-319)the National Natural Science Foundation of China (Nos. 40672081, 40730209)National Basic Research Program of China (No. 2007CB815601)
文摘Minerals might act as important sorbents of sedimentary organic matter and reduce biodegradation, which favors the formation of hydrocarbon source rocks in the earth's history. Since most organic matter is degraded during the sinking process, at ambient temperature, it is important to investigate the adsorption capacity of different minerals during this process, to assess the organic loss from primary productivity to sedimentary organic matter. In this study, montmorillonite and calcite have been selected to study the impact of different minerals on the release, adsorption, and deposition of cyanobacterial (Synechococcus elonpata) fatty acids (FAs) at ambient temperature. Gas chromatography (GC), gas chromatography-mass spectrometry (GC-MS) have been utilized to detect the variation in fatty acids. Primary results suggest that minerals have a different impact on dissolved organic matter. Montmorillonite can specifically enhance the release of fatty acids from cyanobacterial cells by lowering the pH values of the solution. The adsorption of the dissolved organic matter by montmoriilonite will also be enhanced under a lower pH value. Conjunction of fatty acids with montmoriilonite to form a complex will favor the sinking and preservation of these organics. Selective adsorption is observed among fatty acids with different carbon numbers. In contrast, calcite does not show any impact on the release and adsorption of organic matter even though it is reportedly capable of acting as a catalyst during the transformation of organic matter at high temperature. The primary data bridge a link between primary productivity and sedimentary organic matter, suggesting the relative importance of claystones in the formation of hydrocarbon source rocks in the earth's history.
基金This research was supported by the Youth Foundation of National Natural Science of China grant 49503048.
文摘Geological and geochemical studies and experiments on mineralization indicate that the source bed of the La' erma gold deposit in the south subbelt of the western Qinling Mountains is hydrothermal cherts in the Cambrian Taiyangding Group. Organic geochemical study of the cherts shows that the organic precursors intimately associated with gold are marine bacteria and algae. The gold content in chert,is positively correlated with the amount of bacterial and algal microfossils, and simulation experiments on biomineralization of modern bacteria and algae indicate that bacteria and algae played an important role in the formation of the La' erma gold deposit.
基金supported by Chinese Academy of Sciences (Grant No. KZCX2-EW-111)National Natural Science Foundation of China (Grant Nos. 40839910 and 40772002)Natural Sciences and Engineering Research Council of Canada (MJM)
文摘Based on the new material of seven Ordovician-Silurian boundary sections investigated recently, together with previously published data, we analyze the temporal and spatial distributions of the Lungmachi black shales, a key petroleum source bed widely distributed in South China. The Lungmachi black shales range in age from the Normalograptus persculptus Biozone of the uppermost Ordovician to the Spirograptus guerichi Biozone of the lower Telychian, and ten graptolite biozones can be recognized within this unit. The basal and upper contacts of the Lungmachi black shales are diachronous. The basal contact ranges from the N. persculptus to the C. cyphus biozones, a span of five graptolite biozones over two stages. The upper contact ranges from the D. pectinatus-M. argenteus Biozone to the Spirograptus guerichi Biozone, which spans four graptolite biozones over two stages. The Yichang Uplift resulted in the formation of the Hunan-Hubei Submarine High in the border area of Hubei, Hunan, and Chongqing. This is supported by a break in sedimentation in this area spanning all or part of the Hirnantian, and in many areas extending into the underlying Katian and overlying Rhuddanian. Comparison of the distribution of the Katian to Rhuddanian strata in this area indicates a growth and subsequent reduction in area of the Hunan-Hubei Submarine High particularly in the Hirnantian to early Rhuddanian. This may partly represent the influence of the process of formation and melting of ice sheet in Ordovician South Pole and consequent sea level change.