A modified energy-balance equation accounting for P-delta effects and hysteretic behavior of reinforced concrete members is derived. Reduced hysteretic properties of structural components due to combined stiffness and...A modified energy-balance equation accounting for P-delta effects and hysteretic behavior of reinforced concrete members is derived. Reduced hysteretic properties of structural components due to combined stiffness and strength degradation and pinching effects, and hysteretic damping are taken into account in a simple manner by utilizing plastic energy and seismic input energy modification factors. Having a pre-selected yield mechanism, energy balance of structure in inelastic range is considered. P-delta effects are included in derived equation by adding the external work of gravity loads to the work of equivalent inertia forces and equating the total external work to the modified plastic energy. Earthquake energy input to multi degree of freedom(MDOF) system is approximated by using the modal energy-decomposition. Energybased base shear coefficients are verified by means of both pushover analysis and nonlinear time history(NLTH) analysis of several RC frames having different number of stories. NLTH analyses of frames are performed by using the time histories of ten scaled ground motions compatible with elastic design acceleration spectrum and fulfilling duration/amplitude related requirements of Turkish Seismic Design Code. The observed correlation between energy-based base shear force coefficients and the average base shear force coefficients of NLTH analyses provides a reasonable confidence in estimation of nonlinear base shear force capacity of frames by using the derived equation.展开更多
Static and dynamic compression tests were carried out on mortar and paste specimens of three sizes(Ф68 mm×32 mm,Ф59 mm×29.5 mm and Ф32 mm×16 mm)to study the influence of specimen size on the compre...Static and dynamic compression tests were carried out on mortar and paste specimens of three sizes(Ф68 mm×32 mm,Ф59 mm×29.5 mm and Ф32 mm×16 mm)to study the influence of specimen size on the compression behavior of cement-based materials under high strain rates.The static tests were applied using a universalservo-hydraulic system,and the dynamic tests were applied by a spilt Hopkinson pressure bar(SHPB)system.The experimentalresults show that for mortar and paste specimens,the dynamic compressive strength is greater than the quasi-static one,and the dynamic compressive strength for specimens of large size is lower than those of smallsize.However,the dynamic increase factors(DIF)has an opposite trend.Obviously,both strain rate and size effect exist in mortar and paste.The test results were then analyzed using Weibull,Carpinteriand Ba?ant's size effect laws.A good agreement between these three laws and the test results was reached on the compressive strength.However,for the experimentalresults of paste and cement mortar,the size effect is not evident for the peak strain and elastic modulus of paste and cement mortar.展开更多
Currently the catalysis of hydrogen evolution reaction(HER)is mainly focused on the inherent electrocatalytic activity at relatively lower current densities while scarce at high current densities.Nevertheless,the latt...Currently the catalysis of hydrogen evolution reaction(HER)is mainly focused on the inherent electrocatalytic activity at relatively lower current densities while scarce at high current densities.Nevertheless,the latter is highly demanding in efficient mass-production of hydrogen.A SiO_(2) nanospheres template-synthesis is used to prepare mesoporous molybdenum carbide nanocrystals-embedded nitrogen-doped carbon foams(mp-Mo_(2)C/NC).The material shows much more excellent catalytic activity than the non-etched Mo_(2)C/NC toward hydrogen evolution reaction(HER)in acidic medium.More interestingly mp-Mo_(2)C/NC still has larger overpotential than Pt/C at lower current densities,but possess remarkably smaller overpotential than the latter at higher current densities for much better electrocatalytic performance.An approach is developed to investigate the electrode kinetics by Tafel plots,especially with eliminating the diffusion effect,indicating that Pt/C and mp-Mo_(2)C/NC display different reaction mechanisms.At low current densities the former presents reversible reaction,while the latter shows mixed electrochemical polarization/reversible electrode process.In the region of higher current densities,the former becomes totally gas-diffusion controlled with large overpotential,while the latter can still retain an electrode polarization process for much lower overpotential at the same current density.Result endorses that the meso-porously structured mp-Mo_(2)C/NC plays a critical role in avoiding gas diffusion control-resulting large overpotential at high current densities.This work holds great potential for an inexpensive catalyst better than Pt/C in practical applications of mass-production hydrogen at high current densities,while clearly shedding fundamental lights on designs of rational HER catalysts for the uses at high current densities.展开更多
The effect of rare earth element on the solidification behavior of Al-Mg alloy was investigated in a directional solidification apparatus.It was found that during the solidification process.the rare earth element segr...The effect of rare earth element on the solidification behavior of Al-Mg alloy was investigated in a directional solidification apparatus.It was found that during the solidification process.the rare earth element segregated in the liquid at sold-liquid interface,changed the solidification morphology and reduced the secondary arm spacing markedly.展开更多
The optical microcavity effect of the homo-tandem solar cells is explored utilizing the transfer matrix method. Ultrathin silver can reduce the deadzone effect compared with graphene and PH1000, and leads to a factor ...The optical microcavity effect of the homo-tandem solar cells is explored utilizing the transfer matrix method. Ultrathin silver can reduce the deadzone effect compared with graphene and PH1000, and leads to a factor of 1.07 enhancement for an electrical field in a metal microcavity. The enhancement is considered to be the fact that strong exciton-photon coupling occurs in the microcavity due to ultrathin Ag. On the basis of the optical enhancement effect, optical behaviors are manipulated by varying the microcavity length. It is confirmed that ultrathin silver can serve as an ideal interconnection layer as the active layer is ~ 150nm thick and the thickness ratio between front and rear active layers lies between 1:1 and 1:2.展开更多
Pulsed microwaves are widely used inradar,navigation, and communication. The average power density is low at narrow pulse widths or large pulse intervals,but pulsed microwaves at certain peak densities exert numerous ...Pulsed microwaves are widely used inradar,navigation, and communication. The average power density is low at narrow pulse widths or large pulse intervals,but pulsed microwaves at certain peak densities exert numerous biological effects, including展开更多
The effect of adding Ta on the changes of microstructure and Ms temperature of a dualphase shape memory alloy with compositions of (Ni51 Ti49)1 -x.Tax. and Ni50-Ti50 -g.Ta.g were systematically studied. An optical mi...The effect of adding Ta on the changes of microstructure and Ms temperature of a dualphase shape memory alloy with compositions of (Ni51 Ti49)1 -x.Tax. and Ni50-Ti50 -g.Ta.g were systematically studied. An optical microscope, SEM, X-ray diffraction and DSC were utilized in this work. The evolution of the microstructure as a function of Ta content was characterized. The variation of the Ni/Ti ratio in the NiTi phase plays an important role in the change of the Ms temperatures due to the addition of Ta. A pseudobinary NiTi-Ta phase diagram was proposed based on these results.展开更多
Rock behavior is usually run into in study on geological deformation, teetono-mineralization and civil engineering.Rock behavior contains its texture,structure and composition,rock property,and its occurrence backgrou...Rock behavior is usually run into in study on geological deformation, teetono-mineralization and civil engineering.Rock behavior contains its texture,structure and composition,rock property,and its occurrence background or situation. That is to say, temperature, compression,content of water and other liquid in rocks, boundary condition of rock block,straining rate etc.,which are closely related to the depth of occurrence of rock, influence on the rock behavior and deformation effects.展开更多
Our previous studies revealed that second malevibration signal (SMVS) restrained the matingbehavior of N. lugens, the influences of threebiological features (density, age, and wingform) on SMVS’s inhibitory effect we...Our previous studies revealed that second malevibration signal (SMVS) restrained the matingbehavior of N. lugens, the influences of threebiological features (density, age, and wingform) on SMVS’s inhibitory effect were hereinstudied by playing back its record. The dura-tion of playback was 4 h. Except otherwisestatement, N. lugens tested were virginmacropterous males and females aged 4-6 d af-ter emergence, and the density was 5 pairs (5females and 5 males) of N. lugens per cage (4cm in diameter and 8 cm in height). The in-hibitory effect of SMVS was evaluated usingmating rate (i. e. the rate of females withspermatophore). The results were as follows:展开更多
The design of high irradiation-resistant materials is very important for the development of next-generation nuclear reactors. Grain boundaries acting as effective defect sinks are thought to be able to moderate the de...The design of high irradiation-resistant materials is very important for the development of next-generation nuclear reactors. Grain boundaries acting as effective defect sinks are thought to be able to moderate the deterioration of mechanical behaviors of irradiated materials, and have drawn increasing attention in recent years. The study of the effect of grain boundaries on the mechanical behaviors of irradiated materials is a multi-scale problem. At the atomic level, grain boundaries can effectively affect the production and formation of irradiation-induced point defects in grain interiors, which leads to the change of density, size distribution and evolution of defect clusters at grain level. The change of microstructure would influence the macroscopic mechanical properties of the irradiated polycrystal. Here we give a brief review about the effect of grain boundaries on the mechanical behaviors of irradiated metals from three scales: microscopic scale, mesoscopic scale and macroscopic scale.展开更多
As one of the indispensable actuating components in micro-systems,the shafted microgear is in great production demand.Microforming is a manufacturing process to produce microgears to meet the needs.Due to the small ge...As one of the indispensable actuating components in micro-systems,the shafted microgear is in great production demand.Microforming is a manufacturing process to produce microgears to meet the needs.Due to the small geometrical size,there are uncertain process performance and product quality issues in this production process.In this study,the shafted microgears were fabricated in two different scaling factors with four grain sizes using a progressively extrusion-blanking method.To explore the unknown of the process,grain-based modeling was proposed and employed to simulate the entire forming process.The results show that when the grains are large,the anisotropy of single grains has an obvious size effect on the forming behavior and process performance;and the produced geometries and surface quality are worsened;and the deformation load is decreased.Five deformation zones were identified in the microstructures with different hardness and distributions of stress and strain.The simulation by using the proposed model successfully predicted the formation of zones and revealed the inhomogeneous deformation in the forming process.The undesirable geometries of microgears including material unfilling,burr and inclination were observed on the shaft and teeth of gear,and the inclination size is increased obviously with grain size.To avoid the formation of inclination and material unfilling,the punch was redesigned,and a die insert was added to constraint the bottom surface of the gear teeth.The new products had then the better forming quality.展开更多
The purpose of this paper is to study the long time asymptotic behavior for a nonlinear Schrdinger equations with magnetic effect. Under certain conditions, we prove the existence and nonexistence of the non-trivial f...The purpose of this paper is to study the long time asymptotic behavior for a nonlinear Schrdinger equations with magnetic effect. Under certain conditions, we prove the existence and nonexistence of the non-trivial free asymptotic solutions. In addition, the decay estimates of the solutions are also obtained.展开更多
Noise surveys in this country reported that a large number of classrooms in primary and secondary schools in the urban areas were disturbed by environmental noise, particularly by traffic noise. A series of psychologi...Noise surveys in this country reported that a large number of classrooms in primary and secondary schools in the urban areas were disturbed by environmental noise, particularly by traffic noise. A series of psychological tests were conducted to identify pupils' behavior in a classroom under different noise levels within the range of 40 to 70 dBA. Statistical analysis results were obtained by using Relational Data Analysis System (RDAS) software. According to the t-test and single factor variance analysis of the results, significant differences of the pupils' behavior in the classroom have been observed when the percentile exceeded sound level either L50 exceeds 50 dBA or L10 exceeds 55 dBA, or the equivalent continuous sound level Leq exceeds 50 dBA. The same conclusion has been drawn from the average percentages of syllable articulation under different noise levels in a classroom which were the results of tests made in accordance with the procedure described in the National Standard. The maximum acceptable noise level in the classroom thus can be determined.展开更多
文摘A modified energy-balance equation accounting for P-delta effects and hysteretic behavior of reinforced concrete members is derived. Reduced hysteretic properties of structural components due to combined stiffness and strength degradation and pinching effects, and hysteretic damping are taken into account in a simple manner by utilizing plastic energy and seismic input energy modification factors. Having a pre-selected yield mechanism, energy balance of structure in inelastic range is considered. P-delta effects are included in derived equation by adding the external work of gravity loads to the work of equivalent inertia forces and equating the total external work to the modified plastic energy. Earthquake energy input to multi degree of freedom(MDOF) system is approximated by using the modal energy-decomposition. Energybased base shear coefficients are verified by means of both pushover analysis and nonlinear time history(NLTH) analysis of several RC frames having different number of stories. NLTH analyses of frames are performed by using the time histories of ten scaled ground motions compatible with elastic design acceleration spectrum and fulfilling duration/amplitude related requirements of Turkish Seismic Design Code. The observed correlation between energy-based base shear force coefficients and the average base shear force coefficients of NLTH analyses provides a reasonable confidence in estimation of nonlinear base shear force capacity of frames by using the derived equation.
基金Funded by the National Natural Science Foundation of China(No.51509078)the Natural Science Foundation of Jiangsu Province(No.BK20150820)
文摘Static and dynamic compression tests were carried out on mortar and paste specimens of three sizes(Ф68 mm×32 mm,Ф59 mm×29.5 mm and Ф32 mm×16 mm)to study the influence of specimen size on the compression behavior of cement-based materials under high strain rates.The static tests were applied using a universalservo-hydraulic system,and the dynamic tests were applied by a spilt Hopkinson pressure bar(SHPB)system.The experimentalresults show that for mortar and paste specimens,the dynamic compressive strength is greater than the quasi-static one,and the dynamic compressive strength for specimens of large size is lower than those of smallsize.However,the dynamic increase factors(DIF)has an opposite trend.Obviously,both strain rate and size effect exist in mortar and paste.The test results were then analyzed using Weibull,Carpinteriand Ba?ant's size effect laws.A good agreement between these three laws and the test results was reached on the compressive strength.However,for the experimentalresults of paste and cement mortar,the size effect is not evident for the peak strain and elastic modulus of paste and cement mortar.
基金supported by the Start-up grant from Suzhou University of Science and Technology.
文摘Currently the catalysis of hydrogen evolution reaction(HER)is mainly focused on the inherent electrocatalytic activity at relatively lower current densities while scarce at high current densities.Nevertheless,the latter is highly demanding in efficient mass-production of hydrogen.A SiO_(2) nanospheres template-synthesis is used to prepare mesoporous molybdenum carbide nanocrystals-embedded nitrogen-doped carbon foams(mp-Mo_(2)C/NC).The material shows much more excellent catalytic activity than the non-etched Mo_(2)C/NC toward hydrogen evolution reaction(HER)in acidic medium.More interestingly mp-Mo_(2)C/NC still has larger overpotential than Pt/C at lower current densities,but possess remarkably smaller overpotential than the latter at higher current densities for much better electrocatalytic performance.An approach is developed to investigate the electrode kinetics by Tafel plots,especially with eliminating the diffusion effect,indicating that Pt/C and mp-Mo_(2)C/NC display different reaction mechanisms.At low current densities the former presents reversible reaction,while the latter shows mixed electrochemical polarization/reversible electrode process.In the region of higher current densities,the former becomes totally gas-diffusion controlled with large overpotential,while the latter can still retain an electrode polarization process for much lower overpotential at the same current density.Result endorses that the meso-porously structured mp-Mo_(2)C/NC plays a critical role in avoiding gas diffusion control-resulting large overpotential at high current densities.This work holds great potential for an inexpensive catalyst better than Pt/C in practical applications of mass-production hydrogen at high current densities,while clearly shedding fundamental lights on designs of rational HER catalysts for the uses at high current densities.
文摘The effect of rare earth element on the solidification behavior of Al-Mg alloy was investigated in a directional solidification apparatus.It was found that during the solidification process.the rare earth element segregated in the liquid at sold-liquid interface,changed the solidification morphology and reduced the secondary arm spacing markedly.
基金Supported by the National Natural Science Foundation of China under Grant No 61565015the Western Light Talent Training Program of Chinese Academy of Sciences
文摘The optical microcavity effect of the homo-tandem solar cells is explored utilizing the transfer matrix method. Ultrathin silver can reduce the deadzone effect compared with graphene and PH1000, and leads to a factor of 1.07 enhancement for an electrical field in a metal microcavity. The enhancement is considered to be the fact that strong exciton-photon coupling occurs in the microcavity due to ultrathin Ag. On the basis of the optical enhancement effect, optical behaviors are manipulated by varying the microcavity length. It is confirmed that ultrathin silver can serve as an ideal interconnection layer as the active layer is ~ 150nm thick and the thickness ratio between front and rear active layers lies between 1:1 and 1:2.
基金supported by the Foundation of Astronaut Research and Training Center of China [No.SMFA14B06 and No.14ZS017]
文摘Pulsed microwaves are widely used inradar,navigation, and communication. The average power density is low at narrow pulse widths or large pulse intervals,but pulsed microwaves at certain peak densities exert numerous biological effects, including
文摘The effect of adding Ta on the changes of microstructure and Ms temperature of a dualphase shape memory alloy with compositions of (Ni51 Ti49)1 -x.Tax. and Ni50-Ti50 -g.Ta.g were systematically studied. An optical microscope, SEM, X-ray diffraction and DSC were utilized in this work. The evolution of the microstructure as a function of Ta content was characterized. The variation of the Ni/Ti ratio in the NiTi phase plays an important role in the change of the Ms temperatures due to the addition of Ta. A pseudobinary NiTi-Ta phase diagram was proposed based on these results.
文摘Rock behavior is usually run into in study on geological deformation, teetono-mineralization and civil engineering.Rock behavior contains its texture,structure and composition,rock property,and its occurrence background or situation. That is to say, temperature, compression,content of water and other liquid in rocks, boundary condition of rock block,straining rate etc.,which are closely related to the depth of occurrence of rock, influence on the rock behavior and deformation effects.
文摘Our previous studies revealed that second malevibration signal (SMVS) restrained the matingbehavior of N. lugens, the influences of threebiological features (density, age, and wingform) on SMVS’s inhibitory effect were hereinstudied by playing back its record. The dura-tion of playback was 4 h. Except otherwisestatement, N. lugens tested were virginmacropterous males and females aged 4-6 d af-ter emergence, and the density was 5 pairs (5females and 5 males) of N. lugens per cage (4cm in diameter and 8 cm in height). The in-hibitory effect of SMVS was evaluated usingmating rate (i. e. the rate of females withspermatophore). The results were as follows:
基金supported by the National Natural Science Foundation of China (Grant Nos. 11225208 and 11521202)
文摘The design of high irradiation-resistant materials is very important for the development of next-generation nuclear reactors. Grain boundaries acting as effective defect sinks are thought to be able to moderate the deterioration of mechanical behaviors of irradiated materials, and have drawn increasing attention in recent years. The study of the effect of grain boundaries on the mechanical behaviors of irradiated materials is a multi-scale problem. At the atomic level, grain boundaries can effectively affect the production and formation of irradiation-induced point defects in grain interiors, which leads to the change of density, size distribution and evolution of defect clusters at grain level. The change of microstructure would influence the macroscopic mechanical properties of the irradiated polycrystal. Here we give a brief review about the effect of grain boundaries on the mechanical behaviors of irradiated metals from three scales: microscopic scale, mesoscopic scale and macroscopic scale.
基金The authors would like to acknowledge the funding support to this research from the projects of ZE1W and BBAT from The Hong Kong Polytechnic University,the National Natural Science Foundation of China(NSFC)(Grant No.51835011)the General Research Fund(GRF)(Grant No.15223520).
文摘As one of the indispensable actuating components in micro-systems,the shafted microgear is in great production demand.Microforming is a manufacturing process to produce microgears to meet the needs.Due to the small geometrical size,there are uncertain process performance and product quality issues in this production process.In this study,the shafted microgears were fabricated in two different scaling factors with four grain sizes using a progressively extrusion-blanking method.To explore the unknown of the process,grain-based modeling was proposed and employed to simulate the entire forming process.The results show that when the grains are large,the anisotropy of single grains has an obvious size effect on the forming behavior and process performance;and the produced geometries and surface quality are worsened;and the deformation load is decreased.Five deformation zones were identified in the microstructures with different hardness and distributions of stress and strain.The simulation by using the proposed model successfully predicted the formation of zones and revealed the inhomogeneous deformation in the forming process.The undesirable geometries of microgears including material unfilling,burr and inclination were observed on the shaft and teeth of gear,and the inclination size is increased obviously with grain size.To avoid the formation of inclination and material unfilling,the punch was redesigned,and a die insert was added to constraint the bottom surface of the gear teeth.The new products had then the better forming quality.
基金Supported by the National Natural Science Foundation of China.
文摘The purpose of this paper is to study the long time asymptotic behavior for a nonlinear Schrdinger equations with magnetic effect. Under certain conditions, we prove the existence and nonexistence of the non-trivial free asymptotic solutions. In addition, the decay estimates of the solutions are also obtained.
文摘Noise surveys in this country reported that a large number of classrooms in primary and secondary schools in the urban areas were disturbed by environmental noise, particularly by traffic noise. A series of psychological tests were conducted to identify pupils' behavior in a classroom under different noise levels within the range of 40 to 70 dBA. Statistical analysis results were obtained by using Relational Data Analysis System (RDAS) software. According to the t-test and single factor variance analysis of the results, significant differences of the pupils' behavior in the classroom have been observed when the percentile exceeded sound level either L50 exceeds 50 dBA or L10 exceeds 55 dBA, or the equivalent continuous sound level Leq exceeds 50 dBA. The same conclusion has been drawn from the average percentages of syllable articulation under different noise levels in a classroom which were the results of tests made in accordance with the procedure described in the National Standard. The maximum acceptable noise level in the classroom thus can be determined.