Exosomes are cup-shaped extracellular vesicles with a lipid bilayer that is approximately 30 to 200 nm in thickness.Exosomes are widely distributed in a range of body fluids,including urine,blood,milk,and saliva.Exoso...Exosomes are cup-shaped extracellular vesicles with a lipid bilayer that is approximately 30 to 200 nm in thickness.Exosomes are widely distributed in a range of body fluids,including urine,blood,milk,and saliva.Exosomes exert biological function by transporting factors between different cells and by regulating biological pathways in recipient cells.As an important form of intercellular communication,exosomes are increasingly being investigated due to their ability to transfer bioactive molecules such as lipids,proteins,mRNAs,and microRNAs between cells,and because they can regulate physiological and pathological processes in the central nervous system.Adult neurogenesis is a multistage process by which new neurons are generated and migrate to be integrated into existing neuronal circuits.In the adult brain,neurogenesis is mainly localized in two specialized niches:the subventricular zone adjacent to the lateral ventricles and the subgranular zone of the dentate gyrus.An increasing body of evidence indicates that adult neurogenesis is tightly controlled by environmental conditions with the niches.In recent studies,exosomes released from different sources of cells were shown to play an active role in regulating neurogenesis both in vitro and in vivo,thereby participating in the progression of neurodegenerative disorders in patients and in various disease models.Here,we provide a state-of-the-art synopsis of existing research that aimed to identify the diverse components of exosome cargoes and elucidate the therapeutic potential of exosomal contents in the regulation of neurogenesis in several neurodegenerative diseases.We emphasize that exosomal cargoes could serve as a potential biomarker to monitor functional neurogenesis in adults.In addition,exosomes can also be considered as a novel therapeutic approach to treat various neurodegenerative disorders by improving endogenous neurogenesis to mitigate neuronal loss in the central nervous system.展开更多
Mitochondria are critical cellular energy resources and are central to the life of the neuron.Mitophagy selectively clears damaged or dysfunctional mitochondria through autophagic machinery to maintain mitochondrial q...Mitochondria are critical cellular energy resources and are central to the life of the neuron.Mitophagy selectively clears damaged or dysfunctional mitochondria through autophagic machinery to maintain mitochondrial quality control and homeostasis.Mature neurons are postmitotic and consume substantial energy,thus require highly efficient mitophagy pathways to turn over damaged or dysfunctional mitochondria.Recent evidence indicates that mitophagy is pivotal to the pathogenesis of neurological diseases.However,more work is needed to study mitophagy pathway components as potential therapeutic targets.In this review,we briefly discuss the characteristics of nonselective autophagy and selective autophagy,including ERphagy,aggrephagy,and mitophagy.We then introduce the mechanisms of Parkin-dependent and Parkin-independent mitophagy pathways under physiological conditions.Next,we summarize the diverse repertoire of mitochondrial membrane receptors and phospholipids that mediate mitophagy.Importantly,we review the critical role of mitophagy in the pathogenesis of neurodegenerative diseases including Alzheimer’s disease,Parkinson’s disease,and amyotrophic lateral sclerosis.Last,we discuss recent studies considering mitophagy as a potential therapeutic target for treating neurodegenerative diseases.Together,our review may provide novel views to better understand the roles of mitophagy in neurodegenerative disease pathogenesis.展开更多
Alzheimer’s disease is the most prevalent neurodegenerative disease affecting older adults.Primary features of Alzheimer’s disease include extra cellular aggregation of amyloid-βplaques and the accumulation of neur...Alzheimer’s disease is the most prevalent neurodegenerative disease affecting older adults.Primary features of Alzheimer’s disease include extra cellular aggregation of amyloid-βplaques and the accumulation of neurofibrillary tangles,fo rmed by tau protein,in the cells.While there are amyloid-β-ta rgeting therapies for the treatment of Alzheimer’s disease,these therapies are costly and exhibit potential negative side effects.Mounting evidence suggests significant involvement of tau protein in Alzheimer’s disease-related neurodegeneration.As an important microtubule-associated protein,tau plays an important role in maintaining the stability of neuronal microtubules and promoting axonal growth.In fact,clinical studies have shown that abnormal phosphorylation of tau protein occurs before accumulation of amyloid-βin the brain.Various therapeutic strategies targeting tau protein have begun to emerge,and are considered possible methods to prevent and treat Alzheimer’s disease.Specifically,abnormalities in post-translational modifications of the tau protein,including aberrant phosphorylation,ubiquitination,small ubiquitin-like modifier(SUMO)ylation,acetylation,and truncation,contribute to its microtubule dissociation,misfolding,and subcellular missorting.This causes mitochondrial damage,synaptic impairments,gliosis,and neuroinflammation,eventually leading to neurodegeneration and cognitive deficits.This review summarizes the recent findings on the underlying mechanisms of tau protein in the onset and progression of Alzheimer’s disease and discusses tau-targeted treatment of Alzheimer’s disease.展开更多
Changes in olfactory function are considered to be early biomarkers of Parkinson’s disease.Olfactory dysfunction is one of the earliest non-motor features of Parkinson’s disease,appearing in about 90%of patients wit...Changes in olfactory function are considered to be early biomarkers of Parkinson’s disease.Olfactory dysfunction is one of the earliest non-motor features of Parkinson’s disease,appearing in about 90%of patients with early-stage Parkinson’s disease,and can often predate the diagnosis by years.Therefore,olfactory dysfunction should be considered a reliable marker of the disease.However,the mechanisms responsible for olfactory dysfunction are currently unknown.In this article,we clearly explain the pathology and medical definition of olfactory function as a biomarker for early-stage Parkinson’s disease.On the basis of the findings of clinical olfactory function tests and animal model experiments as well as neurotransmitter expression levels,we further characterize the relationship between olfactory dysfunction and neurodegenerative diseases as well as the molecular mechanisms underlying olfactory dysfunction in the pathology of early-stage Parkinson’s disease.The findings highlighted in this review suggest that olfactory dysfunction is an important biomarker for preclinical-stage Parkinson’s disease.Therefore,therapeutic drugs targeting non-motor symptoms such as olfactory dysfunction in the early stage of Parkinson’s disease may prevent or delay dopaminergic neurodegeneration and reduce motor symptoms,highlighting the potential of identifying effective targets for treating Parkinson’s disease by inhibiting the deterioration of olfactory dysfunction.展开更多
Parkinson’s disease is chara cterized by the loss of dopaminergic neurons in the substantia nigra pars com pacta,and although restoring striatal dopamine levels may improve symptoms,no treatment can cure or reve rse ...Parkinson’s disease is chara cterized by the loss of dopaminergic neurons in the substantia nigra pars com pacta,and although restoring striatal dopamine levels may improve symptoms,no treatment can cure or reve rse the disease itself.Stem cell therapy has a regenerative effect and is being actively studied as a candidate for the treatment of Parkinson’s disease.Mesenchymal stem cells are considered a promising option due to fewer ethical concerns,a lower risk of immune rejection,and a lower risk of teratogenicity.We performed a meta-analysis to evaluate the therapeutic effects of mesenchymal stem cells and their derivatives on motor function,memory,and preservation of dopamine rgic neurons in a Parkinson’s disease animal model.We searched bibliographic databases(PubMed/MEDLINE,Embase,CENTRAL,Scopus,and Web of Science)to identify articles and included only pee r-reviewed in vivo interve ntional animal studies published in any language through J une 28,2023.The study utilized the random-effect model to estimate the 95%confidence intervals(CI)of the standard mean differences(SMD)between the treatment and control groups.We use the systematic review center for laboratory animal expe rimentation’s risk of bias tool and the collaborative approach to meta-analysis and review of animal studies checklist for study quality assessment.A total of 33studies with data from 840 Parkinson’s disease model animals were included in the meta-analysis.Treatment with mesenchymal stem cells significantly improved motor function as assessed by the amphetamine-induced rotational test.Among the stem cell types,the bone marrow MSCs with neurotrophic factor group showed la rgest effect size(SMD[95%CI]=-6.21[-9.50 to-2.93],P=0.0001,I^(2)=0.0%).The stem cell treatment group had significantly more tyrosine hydroxylase positive dopamine rgic neurons in the striatum([95%CI]=1.04[0.59 to 1.49],P=0.0001,I^(2)=65.1%)and substantia nigra(SMD[95%CI]=1.38[0.89 to 1.87],P=0.0001,I^(2)=75.3%),indicating a protective effect on dopaminergic neurons.Subgroup analysis of the amphetamine-induced rotation test showed a significant reduction only in the intracranial-striatum route(SMD[95%CI]=-2.59[-3.25 to-1.94],P=0.0001,I^(2)=74.4%).The memory test showed significant improvement only in the intravenous route(SMD[95%CI]=4.80[1.84 to 7.76],P=0.027,I^(2)=79.6%).Mesenchymal stem cells have been shown to positively impact motor function and memory function and protect dopaminergic neurons in preclinical models of Parkinson’s disease.Further research is required to determine the optimal stem cell types,modifications,transplanted cell numbe rs,and delivery methods for these protocols.展开更多
Neurodegenerative diseases are a group of disorders characterized by the progressive degeneration of neurons in the central or peripheral nervous system.Currently,there is no cure for neurodegenerative diseases and th...Neurodegenerative diseases are a group of disorders characterized by the progressive degeneration of neurons in the central or peripheral nervous system.Currently,there is no cure for neurodegenerative diseases and this means a heavy burden for patients and the health system worldwide.Therefore,it is necessary to find new therapeutic approaches,and antisense therapies offer this possibility,having the great advantage of not modifying cellular genome and potentially being safer.Many preclinical and clinical studies aim to test the safety and effectiveness of antisense therapies in the treatment of neurodegenerative diseases.The objective of this review is to summarize the recent advances in the development of these new technologies to treat the most common neurodegenerative diseases,with a focus on those antisense therapies that have already received the approval of the U.S.Food and Drug Administration.展开更多
The treatment of patients with inflammatory bowel disease(IBD),especially those with severe or refractory disease,represents an important challenge for the clinical gastroenterologist.It seems to be no exaggeration to...The treatment of patients with inflammatory bowel disease(IBD),especially those with severe or refractory disease,represents an important challenge for the clinical gastroenterologist.It seems to be no exaggeration to say that in these patients,not only the scientific background of the gastroenterologist is tested,but also the abundance of“gifts”that he should possess(insight,intuition,determ-ination,ability to take initiative,etc.)for the successful outcome of the treatment.In daily clinical practice,depending on the severity of the attack,IBD is treated with one or a combination of two or more pharmaceutical agents.These combin-ations include not only the first-line drugs(e.g.,mesalazine,corticosteroids,antibiotics,etc)but also second-and third-line drugs(immunosuppressants and biologic agents).It is a fact that despite the significant therapeutic advances there is still a significant percentage of patients who do not satisfactorily respond to the treatment applied.Therefore,a part of these patients are going to surgery.In recent years,several small-size clinical studies,reviews,and case reports have been published combining not only biological agents with other drugs(e.g.,immunosuppressants or corticosteroids)but also the combination of two biologi-cal agents simultaneously,especially in severe cases.In our opinion,it is at least a strange(and largely unexplained)fact that we often use combinations of drugs in a given patient although studies comparing the simultaneous administration of two or more drugs with monotherapy are very few.As mentioned above,there is a timid tendency in the literature to combine two biological agents in severe cases unresponsive to the applied treatment or patients with severe extraintestinal manifestations.The appropriate dosage,the duration of the administration,the suitable timing for checking the clinical and laboratory outcome,as well as the treatment side-effects,should be the subject of intense clinical research shortly.In this editorial,we attempt to summarize the existing data regarding the already applied combination therapies and to humbly formulate thoughts and suggestions for the future application of the combination treatment of biological agents in a well-defined category of patients.We suggest that the application of biomarkers and artificial intelligence could help in establishing new forms of treatment using the available modern drugs in patients with IBD resistant to treatment.展开更多
Amyloid-beta-induced neuronal cell death contributes to cognitive decline in Alzheimer’s disease.Citri Reticulatae Semen has diverse beneficial effects on neurodegenerative diseases,including Parkinson’s and Hunting...Amyloid-beta-induced neuronal cell death contributes to cognitive decline in Alzheimer’s disease.Citri Reticulatae Semen has diverse beneficial effects on neurodegenerative diseases,including Parkinson’s and Huntington’s diseases,however,the effect of Citri Reticulatae Semen on Alzheimer’s disease remains unelucidated.In the current study,the anti-apoptotic and autophagic roles of Citri Reticulatae Semen extract on amyloid-beta-induced apoptosis in PC12 cells were first investigated.Citri Reticulatae Semen extract protected PC12 cells from amyloid-beta-induced apoptosis by attenuating the Bax/Bcl-2 ratio via activation of autophagy.In addition,Citri Reticulatae Semen extract was confirmed to bind amyloid-beta as revealed by biolayer interferometry in vitro,and suppress amyloid-beta-induced pathology such as paralysis,in a transgenic Caenorhabditis elegans in vivo model.Moreover,genetically defective Caenorhabditis elegans further confirmed that the neuroprotective effect of Citri Reticulatae Semen extract was autophagy-dependent.Most importantly,Citri Reticulatae Semen extract was confirmed to improve cognitive impairment,neuronal injury and amyloid-beta burden in 3×Tg Alzheimer’s disease mice.As revealed by both in vitro and in vivo models,these results suggest that Citri Reticulatae Semen extract is a potential natural therapeutic agent for Alzheimer’s disease via its neuroprotective autophagic effects.展开更多
Artificial intelligence is increasingly entering everyday healthcare.Large language model(LLM)systems such as Chat Generative Pre-trained Transformer(ChatGPT)have become potentially accessible to everyone,including pa...Artificial intelligence is increasingly entering everyday healthcare.Large language model(LLM)systems such as Chat Generative Pre-trained Transformer(ChatGPT)have become potentially accessible to everyone,including patients with inflammatory bowel diseases(IBD).However,significant ethical issues and pitfalls exist in innovative LLM tools.The hype generated by such systems may lead to unweighted patient trust in these systems.Therefore,it is necessary to understand whether LLMs(trendy ones,such as ChatGPT)can produce plausible medical information(MI)for patients.This review examined ChatGPT’s potential to provide MI regarding questions commonly addressed by patients with IBD to their gastroenterologists.From the review of the outputs provided by ChatGPT,this tool showed some attractive potential while having significant limitations in updating and detailing information and providing inaccurate information in some cases.Further studies and refinement of the ChatGPT,possibly aligning the outputs with the leading medical evidence provided by reliable databases,are needed.展开更多
Diseases like Alzheimer’s and Parkinson’s diseases are defined by inflammation and the damage neurons undergo due to oxidative stress. A primary reactive oxygen species contributor in the central nervous system, NAD...Diseases like Alzheimer’s and Parkinson’s diseases are defined by inflammation and the damage neurons undergo due to oxidative stress. A primary reactive oxygen species contributor in the central nervous system, NADPH oxidase 4, is viewed as a potential therapeutic touchstone and indicative marker for these ailments. This in-depth review brings to light distinct features of NADPH oxidase 4, responsible for generating superoxide and hydrogen peroxide, emphasizing its pivotal role in activating glial cells, inciting inflammation, and disturbing neuronal functions. Significantly, malfunctioning astrocytes, forming the majority in the central nervous system, play a part in advancing neurodegenerative diseases, due to their reactive oxygen species and inflammatory factor secretion. Our study reveals that aiming at NADPH oxidase 4 within astrocytes could be a viable treatment pathway to reduce oxidative damage and halt neurodegenerative processes. Adjusting NADPH oxidase 4 activity might influence the neuroinflammatory cytokine levels, including myeloperoxidase and osteopontin, offering better prospects for conditions like Alzheimer’s disease and Parkinson’s disease. This review sheds light on the role of NADPH oxidase 4 in neural degeneration, emphasizing its drug target potential, and paving the path for novel treatment approaches to combat these severe conditions.展开更多
Parkinson’s disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta.Many studies have been performed based on the supplementation of lost dopaminergic ...Parkinson’s disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta.Many studies have been performed based on the supplementation of lost dopaminergic neurons to treat Parkinson’s disease.The initial strategy for cell replacement therapy used human fetal ventral midbrain and human embryonic stem cells to treat Parkinson’s disease,which could substantially alleviate the symptoms of Parkinson’s disease in clinical practice.However,ethical issues and tumor formation were limitations of its clinical application.Induced pluripotent stem cells can be acquired without sacrificing human embryos,which eliminates the huge ethical barriers of human stem cell therapy.Another widely considered neuronal regeneration strategy is to directly reprogram fibroblasts and astrocytes into neurons,without the need for intermediate proliferation states,thus avoiding issues of immune rejection and tumor formation.Both induced pluripotent stem cells and direct reprogramming of lineage cells have shown promising results in the treatment of Parkinson’s disease.However,there are also ethical concerns and the risk of tumor formation that need to be addressed.This review highlights the current application status of cell reprogramming in the treatment of Parkinson’s disease,focusing on the use of induced pluripotent stem cells in cell replacement therapy,including preclinical animal models and progress in clinical research.The review also discusses the advancements in direct reprogramming of lineage cells in the treatment of Parkinson’s disease,as well as the controversy surrounding in vivo reprogramming.These findings suggest that cell reprogramming may hold great promise as a potential strategy for treating Parkinson’s disease.展开更多
Recent studies have demonstrated that neuroplasticity,such as synaptic plasticity and neurogenesis,exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheime...Recent studies have demonstrated that neuroplasticity,such as synaptic plasticity and neurogenesis,exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheimer’s disease.Hence,promoting neuroplasticity may represent an effective strategy with which Alzheimer’s disease can be alleviated.Due to their significant ability to self-renew,differentiate,and migrate,neural stem cells play an essential role in reversing synaptic and neuronal damage,reducing the pathology of Alzheimer’s disease,including amyloid-β,tau protein,and neuroinflammation,and secreting neurotrophic factors and growth factors that are related to plasticity.These events can promote synaptic plasticity and neurogenesis to repair the microenvironment of the mammalian brain.Consequently,neural stem cells are considered to represent a potential regenerative therapy with which to improve Alzheimer’s disease and other neurodegenerative diseases.In this review,we discuss how neural stem cells regulate neuroplasticity and optimize their effects to enhance their potential for treating Alzheimer’s disease in the clinic.展开更多
Sortilin-related receptor 1(SORL1)is a critical gene associated with late-onset Alzheimer’s disease.SORL1 contributes to the development and progression of this neurodegenerative condition by affecting the transport ...Sortilin-related receptor 1(SORL1)is a critical gene associated with late-onset Alzheimer’s disease.SORL1 contributes to the development and progression of this neurodegenerative condition by affecting the transport and metabolism of intracellularβ-amyloid precursor protein.To better understand the underlying mechanisms of SORL1 in the pathogenesis of late-onset Alzheimer s disease,in this study,we established a mouse model of SorI1 gene knockout using cluste red regularly inters paced short palindro mic repeats-associated protein 9 technology.We found that Sorl1-knocko ut mice displayed deficits in learning and memory.Furthermore,the expression of brain-derived neurotrophic factor was significantly downregulated in the hippocampus and co rtex,and amyloidβ-protein deposits were observed in the brains of 5orl1-knockout mice.In vitro,hippocampal neuronal cell synapses from homozygous Sorl1-knockout mice were impaired.The expression of synaptic proteins,including Drebrin and NR2B,was significantly reduced,and also their colocalization.Additionally,by knocking out the Sorl1 gene in N2a cells,we found that expression of the N-methyl-D-aspartate receptor,NR2B,and cyclic adenosine monophosphate-response element binding protein was also inhibited.These findings suggest that SORL1 participates in the pathogenesis of late-onset Alzheimer s disease by regulating the N-methyl-D-aspartate receptor NR2B/cyclic adenosine monophosphate-response element binding protein signaling axis.展开更多
The blood-brain barrier is a unique function of the microvasculature in the brain parenchyma that maintains homeostasis in the central nervous system.Blood-brain barrier breakdown is a common pathology in various neur...The blood-brain barrier is a unique function of the microvasculature in the brain parenchyma that maintains homeostasis in the central nervous system.Blood-brain barrier breakdown is a common pathology in various neurological diseases,such as Alzheimer’s disease,stroke,multiple sclerosis,and Parkinson’s disease.Traditionally,it has been considered a consequence of neuroinflammation or neurodegeneration,but recent advanced imaging techniques and detailed studies in animal models show that blood-brain barrier breakdown occurs early in the disease process and may precede neuronal loss.Thus,the blood-brain barrier is attractive as a potential therapeutic target for neurological diseases that lack effective therapeutics.To elucidate the molecular mechanism underlying blood-brain barrier breakdown and translate them into therapeutic strategies for neurological diseases,there is a growing demand for experimental models of human origin that allow for functional assessments.Recently,several human induced pluripotent stem cell-derived blood-brain barrier models have been established and various in vitro blood-brain barrier models using microdevices have been proposed.Especially in the Alzheimer’s disease field,the human evidence for blood-brain barrier dysfunction has been demonstrated and human induced pluripotent stem cell-derived blood-brain barrier models have suggested the putative molecular mechanisms of pathological blood-brain barrier.In this review,we summarize recent evidence of blood-brain barrier dysfunction in Alzheimer’s disease from pathological analyses,imaging studies,animal models,and stem cell sources.Additionally,we discuss the potential future directions for blood-brain barrier research.展开更多
The inflammasome is a multiprotein complex involved in innate immunity that mediates the inflammatory response leading to pyroptosis,which is a lytic,inflammatory form of cell death.There is accumulating evidence that...The inflammasome is a multiprotein complex involved in innate immunity that mediates the inflammatory response leading to pyroptosis,which is a lytic,inflammatory form of cell death.There is accumulating evidence that nucleotide-binding domain and leucine-rich repeat pyrin domain containing 3(NLRP3)inflammasome-mediated microglial pyroptosis and NLRP1 inflammasome-mediated neuronal pyroptosis in the brain are closely associated with the pathogenesis of Alzheimer’s disease.In this review,we summarize the possible pathogenic mechanisms of Alzheimer’s disease,focusing on neuroinflammation.We also describe the structures of NLRP3 and NLRP1 and the role their activation plays in Alzheimer’s disease.Finally,we examine the neuroprotective activity of small-molecule inhibitors,endogenous inhibitor proteins,microRNAs,and natural bioactive molecules that target NLRP3 and NLRP1,based on the rationale that inhibiting NLRP3 and NLRP1 inflammasome-mediated pyroptosis can be an effective therapeutic strategy for Alzheimer’s disease.展开更多
BACKGROUND Due to the complexity and numerous comorbidities associated with Crohn’s disease(CD),the incidence of postoperative complications is high,significantly impacting the recovery and prognosis of patients.Cons...BACKGROUND Due to the complexity and numerous comorbidities associated with Crohn’s disease(CD),the incidence of postoperative complications is high,significantly impacting the recovery and prognosis of patients.Consequently,additional stu-dies are required to precisely predict short-term major complications following intestinal resection(IR),aiding surgical decision-making and optimizing patient care.AIM To construct novel models based on machine learning(ML)to predict short-term major postoperative complications in patients with CD following IR.METHODS A retrospective analysis was performed on clinical data derived from a patient cohort that underwent IR for CD from January 2017 to December 2022.The study participants were randomly allocated to either a training cohort or a validation cohort.The logistic regression and random forest(RF)were applied to construct models in the training cohort,with model discrimination evaluated using the area under the curves(AUC).The validation cohort assessed the performance of the constructed models.RESULTS Out of the 259 patients encompassed in the study,5.0%encountered major postoperative complications(Clavien-Dindo≥III)within 30 d following IR for CD.The AUC for the logistic model was 0.916,significantly lower than the AUC of 0.965 for the RF model.The logistic model incorporated a preoperative CD activity index(CDAI)of≥220,a diminished preoperative serum albumin level,conversion to laparotomy surgery,and an extended operation time.A nomogram for the logistic model was plotted.Except for the surgical approach,the other three variables ranked among the top four important variables in the novel ML model.CONCLUSION Both the nomogram and RF exhibited good performance in predicting short-term major postoperative complic-ations in patients with CD,with the RF model showing more superiority.A preoperative CDAI of≥220,a di-minished preoperative serum albumin level,and an extended operation time might be the most crucial variables.The findings of this study can assist clinicians in identifying patients at a higher risk for complications and offering personalized perioperative management to enhance patient outcomes.展开更多
Crohn’s disease(CD)is caused by immune,environmental,and genetic factors.It can involve the entire gastrointestinal tract,and although its prevalence is rapidly increasing its etiology remains unclear.Emerging biolog...Crohn’s disease(CD)is caused by immune,environmental,and genetic factors.It can involve the entire gastrointestinal tract,and although its prevalence is rapidly increasing its etiology remains unclear.Emerging biological and small-molecule drugs have advanced the treatment of CD;however,a considerable proportion of patients are non-responsive to all known drugs.To achieve a breakthrough in this field,innovations that could guide the further development of effective therapies are of utmost urgency.In this review,we first propose the innovative concept of pan-lymphatic dysfunction for the general distribution of lymphatic dysfunction in various diseases,and suggest that CD is the intestinal manifestation of pan-lymphatic dysfunction based on basic and clinical preliminary data.The supporting evidence is fully summarized,including the existence of lymphatic system dysfunction,recognition of the inside-out model,disorders of immune cells,changes in cell plasticity,partial overlap of the underlying mechanisms,and common gut-derived fatty and bile acid metabolism.Another benefit of this novel concept is that it proposes adopting the zebrafish model for studying intestinal diseases,especially CD,as this model is good at presenting and mimicking lymphatic dysfunction.More importantly,the ensuing focus on improving lymphatic function may lead to novel and promising therapeutic strategies for CD.展开更多
BACKGROUND Alzheimer’s disease(AD)is a serious disease causing human dementia and social problems.The quality of life and prognosis of AD patients have attracted much attention.The role of chronic immune inflammation...BACKGROUND Alzheimer’s disease(AD)is a serious disease causing human dementia and social problems.The quality of life and prognosis of AD patients have attracted much attention.The role of chronic immune inflammation in the pathogenesis of AD is becoming more and more important.AIM To study the relationship among cognitive dysfunction,abnormal cellular immune function,neuroimaging results and poor prognostic factors in patients.METHODS A retrospective analysis of 62 hospitalized patients clinical diagnosed with AD who were admitted to our hospital from November 2015 to November 2020.Collect cognitive dysfunction performance characteristics,laboratory test data and neuroimaging data from medical records within 24 h of admission,including Mini Mental State Examination Scale score,drawing clock test,blood T lymphocyte subsets,and neutrophils and lymphocyte ratio(NLR),disturbance of consciousness,extrapyramidal symptoms,electroencephalogram(EEG)and head nucleus magnetic spectroscopy(MRS)and other data.Multivariate logistic regression analysis was used to determine independent prog-nostic factors.the modified Rankin scale(mRS)was used to determine whether the prognosis was good.The correlation between drug treatment and prognostic mRS score was tested by the rank sum test.RESULTS Univariate analysis showed that abnormal cellular immune function,extrapyramidal symptoms,obvious disturbance of consciousness,abnormal EEG,increased NLR,abnormal MRS,and complicated pneumonia were related to the poor prognosis of AD patients.Multivariate logistic regression analysis showed that the decrease in the proportion of T lym-phocytes in the blood after abnormal cellular immune function(odd ratio:2.078,95%confidence interval:1.156-3.986,P<0.05)was an independent risk factor for predicting the poor prognosis of AD.The number of days of donepezil treatment to improve cognitive function was negatively correlated with mRS score(r=0.578,P<0.05).CONCLUSION The decrease in the proportion of T lymphocytes may have predictive value for the poor prognosis of AD.It is recommended that the proportion of T lymphocytes<55%is used as the cut-off threshold for predicting the poor prog-nosis of AD.The early and continuous drug treatment is associated with a good prognosis.展开更多
Parkinson’s disease is a neurodegenerative disease characterized by motor and gastrointestinal dysfunction.Gastrointestinal dysfunction can precede the onset of motor symptoms by several years.Gut microbiota dysbiosi...Parkinson’s disease is a neurodegenerative disease characterized by motor and gastrointestinal dysfunction.Gastrointestinal dysfunction can precede the onset of motor symptoms by several years.Gut microbiota dysbiosis is involved in the pathogenesis of Parkinson’s disease,whether it plays a causal role in motor dysfunction,and the mechanism underlying this potential effect,remain unknown.CCAAT/enhancer binding proteinβ/asparagine endopeptidase(C/EBPβ/AEP)signaling,activated by bacterial endotoxin,can promoteα-synuclein transcription,thereby contributing to Parkinson’s disease pathology.In this study,we aimed to investigate the role of the gut microbiota in C/EBPβ/AEP signaling,α-synuclein-related pathology,and motor symptoms using a rotenone-induced mouse model of Parkinson’s disease combined with antibiotic-induced microbiome depletion and fecal microbiota transplantation.We found that rotenone administration resulted in gut microbiota dysbiosis and perturbation of the intestinal barrier,as well as activation of the C/EBP/AEP pathway,α-synuclein aggregation,and tyrosine hydroxylase-positive neuron loss in the substantia nigra in mice with motor deficits.However,treatment with rotenone did not have any of these adverse effects in mice whose gut microbiota was depleted by pretreatment with antibiotics.Importantly,we found that transplanting gut microbiota derived from mice treated with rotenone induced motor deficits,intestinal inflammation,and endotoxemia.Transplantation of fecal microbiota from healthy control mice alleviated rotenone-induced motor deficits,intestinal inflammation,endotoxemia,and intestinal barrier impairment.These results highlight the vital role that gut microbiota dysbiosis plays in inducing motor deficits,C/EBPβ/AEP signaling activation,andα-synuclein-related pathology in a rotenone-induced mouse model of Parkinson’s disease.Additionally,our findings suggest that supplementing with healthy microbiota may be a safe and effective treatment that could help ameliorate the progression of motor deficits in patients with Parkinson’s disease.展开更多
Regulated cell death is a genetically determined form of programmed cell death that commonly occurs during the development of living organisms.This process plays a crucial role in modulating homeostasis and is evoluti...Regulated cell death is a genetically determined form of programmed cell death that commonly occurs during the development of living organisms.This process plays a crucial role in modulating homeostasis and is evolutionarily conserved across a diverse range of living organisms.Ferroptosis is a classic regulatory mode of cell death.Extensive studies of regulatory cell death in Alzheimer’s disease have yielded increasing evidence that fe rroptosis is closely related to the occurrence,development,and prognosis of Alzheimer’s disease.This review summarizes the molecular mechanisms of ferroptosis and recent research advances in the role of ferro ptosis in Alzheimer’s disease.Our findings are expected to serve as a theoretical and experimental foundation for clinical research and targeted therapy for Alzheimer’s disease.展开更多
基金supported by grants from the Department of Science and Technology of Sichuan Province,Nos.2021ZYD0093(to LY),2022YFS0597(to LY),2021YJ0480(to YT),and 2022ZYD0076(to JY)。
文摘Exosomes are cup-shaped extracellular vesicles with a lipid bilayer that is approximately 30 to 200 nm in thickness.Exosomes are widely distributed in a range of body fluids,including urine,blood,milk,and saliva.Exosomes exert biological function by transporting factors between different cells and by regulating biological pathways in recipient cells.As an important form of intercellular communication,exosomes are increasingly being investigated due to their ability to transfer bioactive molecules such as lipids,proteins,mRNAs,and microRNAs between cells,and because they can regulate physiological and pathological processes in the central nervous system.Adult neurogenesis is a multistage process by which new neurons are generated and migrate to be integrated into existing neuronal circuits.In the adult brain,neurogenesis is mainly localized in two specialized niches:the subventricular zone adjacent to the lateral ventricles and the subgranular zone of the dentate gyrus.An increasing body of evidence indicates that adult neurogenesis is tightly controlled by environmental conditions with the niches.In recent studies,exosomes released from different sources of cells were shown to play an active role in regulating neurogenesis both in vitro and in vivo,thereby participating in the progression of neurodegenerative disorders in patients and in various disease models.Here,we provide a state-of-the-art synopsis of existing research that aimed to identify the diverse components of exosome cargoes and elucidate the therapeutic potential of exosomal contents in the regulation of neurogenesis in several neurodegenerative diseases.We emphasize that exosomal cargoes could serve as a potential biomarker to monitor functional neurogenesis in adults.In addition,exosomes can also be considered as a novel therapeutic approach to treat various neurodegenerative disorders by improving endogenous neurogenesis to mitigate neuronal loss in the central nervous system.
基金supported by the National Natural Science Foundation of China,Nos.82001211(to KY),82101241(to SW),and 82125032(to FL).
文摘Mitochondria are critical cellular energy resources and are central to the life of the neuron.Mitophagy selectively clears damaged or dysfunctional mitochondria through autophagic machinery to maintain mitochondrial quality control and homeostasis.Mature neurons are postmitotic and consume substantial energy,thus require highly efficient mitophagy pathways to turn over damaged or dysfunctional mitochondria.Recent evidence indicates that mitophagy is pivotal to the pathogenesis of neurological diseases.However,more work is needed to study mitophagy pathway components as potential therapeutic targets.In this review,we briefly discuss the characteristics of nonselective autophagy and selective autophagy,including ERphagy,aggrephagy,and mitophagy.We then introduce the mechanisms of Parkin-dependent and Parkin-independent mitophagy pathways under physiological conditions.Next,we summarize the diverse repertoire of mitochondrial membrane receptors and phospholipids that mediate mitophagy.Importantly,we review the critical role of mitophagy in the pathogenesis of neurodegenerative diseases including Alzheimer’s disease,Parkinson’s disease,and amyotrophic lateral sclerosis.Last,we discuss recent studies considering mitophagy as a potential therapeutic target for treating neurodegenerative diseases.Together,our review may provide novel views to better understand the roles of mitophagy in neurodegenerative disease pathogenesis.
基金supported by the National Natural Science Foundation of China,No.82101493(to JY)。
文摘Alzheimer’s disease is the most prevalent neurodegenerative disease affecting older adults.Primary features of Alzheimer’s disease include extra cellular aggregation of amyloid-βplaques and the accumulation of neurofibrillary tangles,fo rmed by tau protein,in the cells.While there are amyloid-β-ta rgeting therapies for the treatment of Alzheimer’s disease,these therapies are costly and exhibit potential negative side effects.Mounting evidence suggests significant involvement of tau protein in Alzheimer’s disease-related neurodegeneration.As an important microtubule-associated protein,tau plays an important role in maintaining the stability of neuronal microtubules and promoting axonal growth.In fact,clinical studies have shown that abnormal phosphorylation of tau protein occurs before accumulation of amyloid-βin the brain.Various therapeutic strategies targeting tau protein have begun to emerge,and are considered possible methods to prevent and treat Alzheimer’s disease.Specifically,abnormalities in post-translational modifications of the tau protein,including aberrant phosphorylation,ubiquitination,small ubiquitin-like modifier(SUMO)ylation,acetylation,and truncation,contribute to its microtubule dissociation,misfolding,and subcellular missorting.This causes mitochondrial damage,synaptic impairments,gliosis,and neuroinflammation,eventually leading to neurodegeneration and cognitive deficits.This review summarizes the recent findings on the underlying mechanisms of tau protein in the onset and progression of Alzheimer’s disease and discusses tau-targeted treatment of Alzheimer’s disease.
基金supported by the National Natural Science Foundation of China,No.82104421the China Postdoctoral Science Foundation,No.2022M721726+1 种基金the Innovation and Entrepreneurship Training Program for College Students of Jiangsu Province,No.202210304155Ythe Research Startup Fund Program of Nantong University,No.135421623023(all to XZ).
文摘Changes in olfactory function are considered to be early biomarkers of Parkinson’s disease.Olfactory dysfunction is one of the earliest non-motor features of Parkinson’s disease,appearing in about 90%of patients with early-stage Parkinson’s disease,and can often predate the diagnosis by years.Therefore,olfactory dysfunction should be considered a reliable marker of the disease.However,the mechanisms responsible for olfactory dysfunction are currently unknown.In this article,we clearly explain the pathology and medical definition of olfactory function as a biomarker for early-stage Parkinson’s disease.On the basis of the findings of clinical olfactory function tests and animal model experiments as well as neurotransmitter expression levels,we further characterize the relationship between olfactory dysfunction and neurodegenerative diseases as well as the molecular mechanisms underlying olfactory dysfunction in the pathology of early-stage Parkinson’s disease.The findings highlighted in this review suggest that olfactory dysfunction is an important biomarker for preclinical-stage Parkinson’s disease.Therefore,therapeutic drugs targeting non-motor symptoms such as olfactory dysfunction in the early stage of Parkinson’s disease may prevent or delay dopaminergic neurodegeneration and reduce motor symptoms,highlighting the potential of identifying effective targets for treating Parkinson’s disease by inhibiting the deterioration of olfactory dysfunction.
文摘Parkinson’s disease is chara cterized by the loss of dopaminergic neurons in the substantia nigra pars com pacta,and although restoring striatal dopamine levels may improve symptoms,no treatment can cure or reve rse the disease itself.Stem cell therapy has a regenerative effect and is being actively studied as a candidate for the treatment of Parkinson’s disease.Mesenchymal stem cells are considered a promising option due to fewer ethical concerns,a lower risk of immune rejection,and a lower risk of teratogenicity.We performed a meta-analysis to evaluate the therapeutic effects of mesenchymal stem cells and their derivatives on motor function,memory,and preservation of dopamine rgic neurons in a Parkinson’s disease animal model.We searched bibliographic databases(PubMed/MEDLINE,Embase,CENTRAL,Scopus,and Web of Science)to identify articles and included only pee r-reviewed in vivo interve ntional animal studies published in any language through J une 28,2023.The study utilized the random-effect model to estimate the 95%confidence intervals(CI)of the standard mean differences(SMD)between the treatment and control groups.We use the systematic review center for laboratory animal expe rimentation’s risk of bias tool and the collaborative approach to meta-analysis and review of animal studies checklist for study quality assessment.A total of 33studies with data from 840 Parkinson’s disease model animals were included in the meta-analysis.Treatment with mesenchymal stem cells significantly improved motor function as assessed by the amphetamine-induced rotational test.Among the stem cell types,the bone marrow MSCs with neurotrophic factor group showed la rgest effect size(SMD[95%CI]=-6.21[-9.50 to-2.93],P=0.0001,I^(2)=0.0%).The stem cell treatment group had significantly more tyrosine hydroxylase positive dopamine rgic neurons in the striatum([95%CI]=1.04[0.59 to 1.49],P=0.0001,I^(2)=65.1%)and substantia nigra(SMD[95%CI]=1.38[0.89 to 1.87],P=0.0001,I^(2)=75.3%),indicating a protective effect on dopaminergic neurons.Subgroup analysis of the amphetamine-induced rotation test showed a significant reduction only in the intracranial-striatum route(SMD[95%CI]=-2.59[-3.25 to-1.94],P=0.0001,I^(2)=74.4%).The memory test showed significant improvement only in the intravenous route(SMD[95%CI]=4.80[1.84 to 7.76],P=0.027,I^(2)=79.6%).Mesenchymal stem cells have been shown to positively impact motor function and memory function and protect dopaminergic neurons in preclinical models of Parkinson’s disease.Further research is required to determine the optimal stem cell types,modifications,transplanted cell numbe rs,and delivery methods for these protocols.
基金supported by Association 2HE(Center for Human Health and Environment)by Regione Puglia-Grant Malattie Rare DUP n.246 of 2019(to CB).
文摘Neurodegenerative diseases are a group of disorders characterized by the progressive degeneration of neurons in the central or peripheral nervous system.Currently,there is no cure for neurodegenerative diseases and this means a heavy burden for patients and the health system worldwide.Therefore,it is necessary to find new therapeutic approaches,and antisense therapies offer this possibility,having the great advantage of not modifying cellular genome and potentially being safer.Many preclinical and clinical studies aim to test the safety and effectiveness of antisense therapies in the treatment of neurodegenerative diseases.The objective of this review is to summarize the recent advances in the development of these new technologies to treat the most common neurodegenerative diseases,with a focus on those antisense therapies that have already received the approval of the U.S.Food and Drug Administration.
文摘The treatment of patients with inflammatory bowel disease(IBD),especially those with severe or refractory disease,represents an important challenge for the clinical gastroenterologist.It seems to be no exaggeration to say that in these patients,not only the scientific background of the gastroenterologist is tested,but also the abundance of“gifts”that he should possess(insight,intuition,determ-ination,ability to take initiative,etc.)for the successful outcome of the treatment.In daily clinical practice,depending on the severity of the attack,IBD is treated with one or a combination of two or more pharmaceutical agents.These combin-ations include not only the first-line drugs(e.g.,mesalazine,corticosteroids,antibiotics,etc)but also second-and third-line drugs(immunosuppressants and biologic agents).It is a fact that despite the significant therapeutic advances there is still a significant percentage of patients who do not satisfactorily respond to the treatment applied.Therefore,a part of these patients are going to surgery.In recent years,several small-size clinical studies,reviews,and case reports have been published combining not only biological agents with other drugs(e.g.,immunosuppressants or corticosteroids)but also the combination of two biologi-cal agents simultaneously,especially in severe cases.In our opinion,it is at least a strange(and largely unexplained)fact that we often use combinations of drugs in a given patient although studies comparing the simultaneous administration of two or more drugs with monotherapy are very few.As mentioned above,there is a timid tendency in the literature to combine two biological agents in severe cases unresponsive to the applied treatment or patients with severe extraintestinal manifestations.The appropriate dosage,the duration of the administration,the suitable timing for checking the clinical and laboratory outcome,as well as the treatment side-effects,should be the subject of intense clinical research shortly.In this editorial,we attempt to summarize the existing data regarding the already applied combination therapies and to humbly formulate thoughts and suggestions for the future application of the combination treatment of biological agents in a well-defined category of patients.We suggest that the application of biomarkers and artificial intelligence could help in establishing new forms of treatment using the available modern drugs in patients with IBD resistant to treatment.
基金supported by FDCT grants from the Macao Science and Technology Development Fund,China,No.002/2023/ALC(to BYKL)Foshan Medicine Dengfeng Project of China 2019-2021(to BYKL)+3 种基金the Science and Technology Program of Sichuan Province,Nos.2022YFS0620(to DQ)and MZGC20230041(to XFW)the TCMs Commission of Sichuan Province,No.2021MS469(to YT)the Science and Technology Program of Luzhou,No.2022-WGR-194(to YT)the Southwest Medical University Science and Technology Program,No.2021NJXNYD04(to DQ).
文摘Amyloid-beta-induced neuronal cell death contributes to cognitive decline in Alzheimer’s disease.Citri Reticulatae Semen has diverse beneficial effects on neurodegenerative diseases,including Parkinson’s and Huntington’s diseases,however,the effect of Citri Reticulatae Semen on Alzheimer’s disease remains unelucidated.In the current study,the anti-apoptotic and autophagic roles of Citri Reticulatae Semen extract on amyloid-beta-induced apoptosis in PC12 cells were first investigated.Citri Reticulatae Semen extract protected PC12 cells from amyloid-beta-induced apoptosis by attenuating the Bax/Bcl-2 ratio via activation of autophagy.In addition,Citri Reticulatae Semen extract was confirmed to bind amyloid-beta as revealed by biolayer interferometry in vitro,and suppress amyloid-beta-induced pathology such as paralysis,in a transgenic Caenorhabditis elegans in vivo model.Moreover,genetically defective Caenorhabditis elegans further confirmed that the neuroprotective effect of Citri Reticulatae Semen extract was autophagy-dependent.Most importantly,Citri Reticulatae Semen extract was confirmed to improve cognitive impairment,neuronal injury and amyloid-beta burden in 3×Tg Alzheimer’s disease mice.As revealed by both in vitro and in vivo models,these results suggest that Citri Reticulatae Semen extract is a potential natural therapeutic agent for Alzheimer’s disease via its neuroprotective autophagic effects.
文摘Artificial intelligence is increasingly entering everyday healthcare.Large language model(LLM)systems such as Chat Generative Pre-trained Transformer(ChatGPT)have become potentially accessible to everyone,including patients with inflammatory bowel diseases(IBD).However,significant ethical issues and pitfalls exist in innovative LLM tools.The hype generated by such systems may lead to unweighted patient trust in these systems.Therefore,it is necessary to understand whether LLMs(trendy ones,such as ChatGPT)can produce plausible medical information(MI)for patients.This review examined ChatGPT’s potential to provide MI regarding questions commonly addressed by patients with IBD to their gastroenterologists.From the review of the outputs provided by ChatGPT,this tool showed some attractive potential while having significant limitations in updating and detailing information and providing inaccurate information in some cases.Further studies and refinement of the ChatGPT,possibly aligning the outputs with the leading medical evidence provided by reliable databases,are needed.
基金supported by the National Research Foundation of the Republic of Korea 2018R1D1A3B07047960the Soonchunhyang University Research Fund(to SSY).
文摘Diseases like Alzheimer’s and Parkinson’s diseases are defined by inflammation and the damage neurons undergo due to oxidative stress. A primary reactive oxygen species contributor in the central nervous system, NADPH oxidase 4, is viewed as a potential therapeutic touchstone and indicative marker for these ailments. This in-depth review brings to light distinct features of NADPH oxidase 4, responsible for generating superoxide and hydrogen peroxide, emphasizing its pivotal role in activating glial cells, inciting inflammation, and disturbing neuronal functions. Significantly, malfunctioning astrocytes, forming the majority in the central nervous system, play a part in advancing neurodegenerative diseases, due to their reactive oxygen species and inflammatory factor secretion. Our study reveals that aiming at NADPH oxidase 4 within astrocytes could be a viable treatment pathway to reduce oxidative damage and halt neurodegenerative processes. Adjusting NADPH oxidase 4 activity might influence the neuroinflammatory cytokine levels, including myeloperoxidase and osteopontin, offering better prospects for conditions like Alzheimer’s disease and Parkinson’s disease. This review sheds light on the role of NADPH oxidase 4 in neural degeneration, emphasizing its drug target potential, and paving the path for novel treatment approaches to combat these severe conditions.
基金supported by the National Natural Science Foundation of China,No.31960120Yunnan Science and Technology Talent and Platform Plan,No.202105AC160041(both to ZW).
文摘Parkinson’s disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta.Many studies have been performed based on the supplementation of lost dopaminergic neurons to treat Parkinson’s disease.The initial strategy for cell replacement therapy used human fetal ventral midbrain and human embryonic stem cells to treat Parkinson’s disease,which could substantially alleviate the symptoms of Parkinson’s disease in clinical practice.However,ethical issues and tumor formation were limitations of its clinical application.Induced pluripotent stem cells can be acquired without sacrificing human embryos,which eliminates the huge ethical barriers of human stem cell therapy.Another widely considered neuronal regeneration strategy is to directly reprogram fibroblasts and astrocytes into neurons,without the need for intermediate proliferation states,thus avoiding issues of immune rejection and tumor formation.Both induced pluripotent stem cells and direct reprogramming of lineage cells have shown promising results in the treatment of Parkinson’s disease.However,there are also ethical concerns and the risk of tumor formation that need to be addressed.This review highlights the current application status of cell reprogramming in the treatment of Parkinson’s disease,focusing on the use of induced pluripotent stem cells in cell replacement therapy,including preclinical animal models and progress in clinical research.The review also discusses the advancements in direct reprogramming of lineage cells in the treatment of Parkinson’s disease,as well as the controversy surrounding in vivo reprogramming.These findings suggest that cell reprogramming may hold great promise as a potential strategy for treating Parkinson’s disease.
基金supported by the National Natural Science Foundation of China,No.82074533(to LZ).
文摘Recent studies have demonstrated that neuroplasticity,such as synaptic plasticity and neurogenesis,exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheimer’s disease.Hence,promoting neuroplasticity may represent an effective strategy with which Alzheimer’s disease can be alleviated.Due to their significant ability to self-renew,differentiate,and migrate,neural stem cells play an essential role in reversing synaptic and neuronal damage,reducing the pathology of Alzheimer’s disease,including amyloid-β,tau protein,and neuroinflammation,and secreting neurotrophic factors and growth factors that are related to plasticity.These events can promote synaptic plasticity and neurogenesis to repair the microenvironment of the mammalian brain.Consequently,neural stem cells are considered to represent a potential regenerative therapy with which to improve Alzheimer’s disease and other neurodegenerative diseases.In this review,we discuss how neural stem cells regulate neuroplasticity and optimize their effects to enhance their potential for treating Alzheimer’s disease in the clinic.
基金supported by the Community Development Office of Hunan Provincial Science and Technology DepartmentChina,Nos.2020SK53613(to DH),21JJ31006(to DH)the Fundamental Research Funds of Central South University,Nos.CX20220375(to TX),2023zzts215(to MZ)。
文摘Sortilin-related receptor 1(SORL1)is a critical gene associated with late-onset Alzheimer’s disease.SORL1 contributes to the development and progression of this neurodegenerative condition by affecting the transport and metabolism of intracellularβ-amyloid precursor protein.To better understand the underlying mechanisms of SORL1 in the pathogenesis of late-onset Alzheimer s disease,in this study,we established a mouse model of SorI1 gene knockout using cluste red regularly inters paced short palindro mic repeats-associated protein 9 technology.We found that Sorl1-knocko ut mice displayed deficits in learning and memory.Furthermore,the expression of brain-derived neurotrophic factor was significantly downregulated in the hippocampus and co rtex,and amyloidβ-protein deposits were observed in the brains of 5orl1-knockout mice.In vitro,hippocampal neuronal cell synapses from homozygous Sorl1-knockout mice were impaired.The expression of synaptic proteins,including Drebrin and NR2B,was significantly reduced,and also their colocalization.Additionally,by knocking out the Sorl1 gene in N2a cells,we found that expression of the N-methyl-D-aspartate receptor,NR2B,and cyclic adenosine monophosphate-response element binding protein was also inhibited.These findings suggest that SORL1 participates in the pathogenesis of late-onset Alzheimer s disease by regulating the N-methyl-D-aspartate receptor NR2B/cyclic adenosine monophosphate-response element binding protein signaling axis.
基金supported by the Uehara Memorial Foundation,JSPS under the Joint Research Program implemented in association with SNSF(JRPs),Grant No.JPJSJRP20221507 and KAKENHI Grant No.22K15711,JST FOREST Program(Grant No.JPMJFR2269,Japan)2022 iPS Academia Japan Grant,Life Science Foundation of Japan,Kato Memorial Bioscience Foundation,THE YUKIHIKO MIYATA MEMORIAL TRUST FOR ALS RESEARCH,the ICHIRO KANEHARA FOUNDATION,Takeda Science Foundation,and the YAMAGUCHI UNIVERSITY FUNDATION(all to HN).
文摘The blood-brain barrier is a unique function of the microvasculature in the brain parenchyma that maintains homeostasis in the central nervous system.Blood-brain barrier breakdown is a common pathology in various neurological diseases,such as Alzheimer’s disease,stroke,multiple sclerosis,and Parkinson’s disease.Traditionally,it has been considered a consequence of neuroinflammation or neurodegeneration,but recent advanced imaging techniques and detailed studies in animal models show that blood-brain barrier breakdown occurs early in the disease process and may precede neuronal loss.Thus,the blood-brain barrier is attractive as a potential therapeutic target for neurological diseases that lack effective therapeutics.To elucidate the molecular mechanism underlying blood-brain barrier breakdown and translate them into therapeutic strategies for neurological diseases,there is a growing demand for experimental models of human origin that allow for functional assessments.Recently,several human induced pluripotent stem cell-derived blood-brain barrier models have been established and various in vitro blood-brain barrier models using microdevices have been proposed.Especially in the Alzheimer’s disease field,the human evidence for blood-brain barrier dysfunction has been demonstrated and human induced pluripotent stem cell-derived blood-brain barrier models have suggested the putative molecular mechanisms of pathological blood-brain barrier.In this review,we summarize recent evidence of blood-brain barrier dysfunction in Alzheimer’s disease from pathological analyses,imaging studies,animal models,and stem cell sources.Additionally,we discuss the potential future directions for blood-brain barrier research.
基金supported by the Natural Science Foundation of Zhejiang Province of China,Nos.LQ22H090003(to JJ),LTGY23C090001(to XZ),LY23H020008(to BH)Sci-Tech Planning Project of Jiaxing,Nos.2021AY30001(to XZ)and 2022AY30020(to JJ).
文摘The inflammasome is a multiprotein complex involved in innate immunity that mediates the inflammatory response leading to pyroptosis,which is a lytic,inflammatory form of cell death.There is accumulating evidence that nucleotide-binding domain and leucine-rich repeat pyrin domain containing 3(NLRP3)inflammasome-mediated microglial pyroptosis and NLRP1 inflammasome-mediated neuronal pyroptosis in the brain are closely associated with the pathogenesis of Alzheimer’s disease.In this review,we summarize the possible pathogenic mechanisms of Alzheimer’s disease,focusing on neuroinflammation.We also describe the structures of NLRP3 and NLRP1 and the role their activation plays in Alzheimer’s disease.Finally,we examine the neuroprotective activity of small-molecule inhibitors,endogenous inhibitor proteins,microRNAs,and natural bioactive molecules that target NLRP3 and NLRP1,based on the rationale that inhibiting NLRP3 and NLRP1 inflammasome-mediated pyroptosis can be an effective therapeutic strategy for Alzheimer’s disease.
基金Supported by Horizontal Project of Shanghai Tenth People’s Hospital,No.DS05!06!22016 and No.DS05!06!22017.
文摘BACKGROUND Due to the complexity and numerous comorbidities associated with Crohn’s disease(CD),the incidence of postoperative complications is high,significantly impacting the recovery and prognosis of patients.Consequently,additional stu-dies are required to precisely predict short-term major complications following intestinal resection(IR),aiding surgical decision-making and optimizing patient care.AIM To construct novel models based on machine learning(ML)to predict short-term major postoperative complications in patients with CD following IR.METHODS A retrospective analysis was performed on clinical data derived from a patient cohort that underwent IR for CD from January 2017 to December 2022.The study participants were randomly allocated to either a training cohort or a validation cohort.The logistic regression and random forest(RF)were applied to construct models in the training cohort,with model discrimination evaluated using the area under the curves(AUC).The validation cohort assessed the performance of the constructed models.RESULTS Out of the 259 patients encompassed in the study,5.0%encountered major postoperative complications(Clavien-Dindo≥III)within 30 d following IR for CD.The AUC for the logistic model was 0.916,significantly lower than the AUC of 0.965 for the RF model.The logistic model incorporated a preoperative CD activity index(CDAI)of≥220,a diminished preoperative serum albumin level,conversion to laparotomy surgery,and an extended operation time.A nomogram for the logistic model was plotted.Except for the surgical approach,the other three variables ranked among the top four important variables in the novel ML model.CONCLUSION Both the nomogram and RF exhibited good performance in predicting short-term major postoperative complic-ations in patients with CD,with the RF model showing more superiority.A preoperative CDAI of≥220,a di-minished preoperative serum albumin level,and an extended operation time might be the most crucial variables.The findings of this study can assist clinicians in identifying patients at a higher risk for complications and offering personalized perioperative management to enhance patient outcomes.
文摘Crohn’s disease(CD)is caused by immune,environmental,and genetic factors.It can involve the entire gastrointestinal tract,and although its prevalence is rapidly increasing its etiology remains unclear.Emerging biological and small-molecule drugs have advanced the treatment of CD;however,a considerable proportion of patients are non-responsive to all known drugs.To achieve a breakthrough in this field,innovations that could guide the further development of effective therapies are of utmost urgency.In this review,we first propose the innovative concept of pan-lymphatic dysfunction for the general distribution of lymphatic dysfunction in various diseases,and suggest that CD is the intestinal manifestation of pan-lymphatic dysfunction based on basic and clinical preliminary data.The supporting evidence is fully summarized,including the existence of lymphatic system dysfunction,recognition of the inside-out model,disorders of immune cells,changes in cell plasticity,partial overlap of the underlying mechanisms,and common gut-derived fatty and bile acid metabolism.Another benefit of this novel concept is that it proposes adopting the zebrafish model for studying intestinal diseases,especially CD,as this model is good at presenting and mimicking lymphatic dysfunction.More importantly,the ensuing focus on improving lymphatic function may lead to novel and promising therapeutic strategies for CD.
基金Supported by the National Natural Science Foundation of China,No.3206080019 and No.32060182Science and Technology Support Plan of Guizhou Province in China,No.[2020]4Y129Qiannan Prefecture Science and Technology Plan Project,No.[2022]01.
文摘BACKGROUND Alzheimer’s disease(AD)is a serious disease causing human dementia and social problems.The quality of life and prognosis of AD patients have attracted much attention.The role of chronic immune inflammation in the pathogenesis of AD is becoming more and more important.AIM To study the relationship among cognitive dysfunction,abnormal cellular immune function,neuroimaging results and poor prognostic factors in patients.METHODS A retrospective analysis of 62 hospitalized patients clinical diagnosed with AD who were admitted to our hospital from November 2015 to November 2020.Collect cognitive dysfunction performance characteristics,laboratory test data and neuroimaging data from medical records within 24 h of admission,including Mini Mental State Examination Scale score,drawing clock test,blood T lymphocyte subsets,and neutrophils and lymphocyte ratio(NLR),disturbance of consciousness,extrapyramidal symptoms,electroencephalogram(EEG)and head nucleus magnetic spectroscopy(MRS)and other data.Multivariate logistic regression analysis was used to determine independent prog-nostic factors.the modified Rankin scale(mRS)was used to determine whether the prognosis was good.The correlation between drug treatment and prognostic mRS score was tested by the rank sum test.RESULTS Univariate analysis showed that abnormal cellular immune function,extrapyramidal symptoms,obvious disturbance of consciousness,abnormal EEG,increased NLR,abnormal MRS,and complicated pneumonia were related to the poor prognosis of AD patients.Multivariate logistic regression analysis showed that the decrease in the proportion of T lym-phocytes in the blood after abnormal cellular immune function(odd ratio:2.078,95%confidence interval:1.156-3.986,P<0.05)was an independent risk factor for predicting the poor prognosis of AD.The number of days of donepezil treatment to improve cognitive function was negatively correlated with mRS score(r=0.578,P<0.05).CONCLUSION The decrease in the proportion of T lymphocytes may have predictive value for the poor prognosis of AD.It is recommended that the proportion of T lymphocytes<55%is used as the cut-off threshold for predicting the poor prog-nosis of AD.The early and continuous drug treatment is associated with a good prognosis.
基金supported by Jiangsu Provincial Medical Key Discipline,No.ZDXK202217(to CFL)Jiangsu Planned Projects for Postdoctoral Research Funds,No.1601056C(to SL).
文摘Parkinson’s disease is a neurodegenerative disease characterized by motor and gastrointestinal dysfunction.Gastrointestinal dysfunction can precede the onset of motor symptoms by several years.Gut microbiota dysbiosis is involved in the pathogenesis of Parkinson’s disease,whether it plays a causal role in motor dysfunction,and the mechanism underlying this potential effect,remain unknown.CCAAT/enhancer binding proteinβ/asparagine endopeptidase(C/EBPβ/AEP)signaling,activated by bacterial endotoxin,can promoteα-synuclein transcription,thereby contributing to Parkinson’s disease pathology.In this study,we aimed to investigate the role of the gut microbiota in C/EBPβ/AEP signaling,α-synuclein-related pathology,and motor symptoms using a rotenone-induced mouse model of Parkinson’s disease combined with antibiotic-induced microbiome depletion and fecal microbiota transplantation.We found that rotenone administration resulted in gut microbiota dysbiosis and perturbation of the intestinal barrier,as well as activation of the C/EBP/AEP pathway,α-synuclein aggregation,and tyrosine hydroxylase-positive neuron loss in the substantia nigra in mice with motor deficits.However,treatment with rotenone did not have any of these adverse effects in mice whose gut microbiota was depleted by pretreatment with antibiotics.Importantly,we found that transplanting gut microbiota derived from mice treated with rotenone induced motor deficits,intestinal inflammation,and endotoxemia.Transplantation of fecal microbiota from healthy control mice alleviated rotenone-induced motor deficits,intestinal inflammation,endotoxemia,and intestinal barrier impairment.These results highlight the vital role that gut microbiota dysbiosis plays in inducing motor deficits,C/EBPβ/AEP signaling activation,andα-synuclein-related pathology in a rotenone-induced mouse model of Parkinson’s disease.Additionally,our findings suggest that supplementing with healthy microbiota may be a safe and effective treatment that could help ameliorate the progression of motor deficits in patients with Parkinson’s disease.
基金supported by the National Natural Science Foundation of China,No.81501106(to CF)Fund of Taishan Scholar Project(to CF)+1 种基金the Natural Science Foundation of Shandong Province,No.ZR2020QH106(to YH)the Medical and Health Science and Technology Development Plan of Shandong Province,No.202203010799(to QS)。
文摘Regulated cell death is a genetically determined form of programmed cell death that commonly occurs during the development of living organisms.This process plays a crucial role in modulating homeostasis and is evolutionarily conserved across a diverse range of living organisms.Ferroptosis is a classic regulatory mode of cell death.Extensive studies of regulatory cell death in Alzheimer’s disease have yielded increasing evidence that fe rroptosis is closely related to the occurrence,development,and prognosis of Alzheimer’s disease.This review summarizes the molecular mechanisms of ferroptosis and recent research advances in the role of ferro ptosis in Alzheimer’s disease.Our findings are expected to serve as a theoretical and experimental foundation for clinical research and targeted therapy for Alzheimer’s disease.