Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-Ⅱ civil navigation message(BDⅡ-CNAV) are vulnerable to spoofing attack and replay attack.To solve this problem,we present a s...Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-Ⅱ civil navigation message(BDⅡ-CNAV) are vulnerable to spoofing attack and replay attack.To solve this problem,we present a security authentication protocol,called as BDSec,which is designed by using China’s cryptography Shangyong Mima(SM) series algorithms,such as SM2/4/9 and Zu Chongzhi(ZUC)algorithm.In BDSec protocol,both of BDⅡ-CNAV and signature information are encrypted using the SM4 algorithm(Symmetric encryption mechanism).The encrypted result is used as the subject authentication information.BDSec protocol applies SM9 algorithm(Identity-based cryptography mechanism) to protect the integrity of the BDⅡ-CNAV,adopts the SM2 algorithm(Public key cryptosystem) to guarantee the confidentiality of the important session information,and uses the ZUC algorithm(Encryption and integrity algorithm) to verify the integrity of the message authentication serial number and initial information and the information in authentication initialization sub-protocol respectively.The results of the SVO logic reasoning and performance analysis show that BDSec protocol meets security requirements for the dual user identity authentication in BDS and can realize the security authentication of BDⅡ-CNAV.展开更多
为了分析当前GPS(Global Positioning System)、Galileo(Galileo Navigation Satellite System)和BDS-3(Beidou Navigation Satellite System with Global Coverage)广播星历的精度,详细分析研究了各种偏差改正及消除方法,并尽可能地消...为了分析当前GPS(Global Positioning System)、Galileo(Galileo Navigation Satellite System)和BDS-3(Beidou Navigation Satellite System with Global Coverage)广播星历的精度,详细分析研究了各种偏差改正及消除方法,并尽可能地消除了系统误差和粗差对评估结果的影响。选取2021-11-01/12-31共61天MGEX(multi-GNSS experiment)发布的多系统混合广播星历与武汉大学分析中心发布的事后精密星历数据进行实验,对GPS、Galileo和BDS-3近期广播星历精度进行对比分析,实验结果表明:3个系统广播星历整体精度由高到低依次是Galileo、BDS-3和GPS,其空间信号测距误差的RMS(root mean square)分别优于0.17、0.25和0.37 m,整体轨道精度的RMS分别优于0.17、0.12和0.25 m,BDS-3广播星历的轨道精度最高,钟差误差的RMS分别优于0.15、0.23和0.27 m,Galileo广播星历的钟差精度最高。对于GPS卫星的广播星历,blockⅢA卫星钟差和轨道精度均优于其他GPS类型卫星。展开更多
Spatiotemporal information,positioning and navigation services have become important elements of new type infrastructure.The rapid development of global digital trade provides a large-scale application scenario for th...Spatiotemporal information,positioning and navigation services have become important elements of new type infrastructure.The rapid development of global digital trade provides a large-scale application scenario for the use of Beidou Navigation Satellite System(BDS)spatiotemporal information to support the certification of origin of agricultural products.The BDS spatiotemporal information agricultural product digital credit system uses such modules as BDS,spatiotemporal information collection,spatiotemporal coding,and spatiotemporal blockchain.It incorporates multi-level joint supervision mechanisms such as government,associations,and users.Starting from the initial production link of agricultural products,it realizes the correspondence and locking of online and offline products,effectively improves the integrity and credibility of information in the production process,finished product quality and circulation process of products,effectively manages the green production and anti-channel conflicts of producers,and provides credible information for consumers,thus realizing the digital credit certification of products.The successful practice of characteristic agricultural products in Yunnan Province has verified the application ability of the BDS spatiotemporal information agricultural product digital credit system.This system has played a significant role in promoting the online and offline locking,credible information,effective supervision and high quality and high price of characteristic agricultural products from the field.The BDS provides services for global digital trade and contributes to the further enhancement of the global application scale of GNSS.展开更多
针对当前推土机在作业过程中操作复杂、施工效果评估困难等问题,基于北斗实时动态差分定位(real time kinematic,RTK)技术和运动学方程,求得推土机实时位置;提出了以推土高程和设计平面的高程差作为平整施工质量评价的方法,可直观评价...针对当前推土机在作业过程中操作复杂、施工效果评估困难等问题,基于北斗实时动态差分定位(real time kinematic,RTK)技术和运动学方程,求得推土机实时位置;提出了以推土高程和设计平面的高程差作为平整施工质量评价的方法,可直观评价施工效果,研制了驾驶引导装置,可实时显示推土机状态与施工进度。工程应用表明,该装置达到了厘米级的定位精度,定位的绝对误差小于5 cm,满足推土机精准施工的需求;车载显示终端使用RS232通信可精确获取推土机坐标、速度、航向等自身状态参数和施工数据。在实际施工场景中,该系统可有效减少驾驶员返工次数、降低劳动强度,提高了施工效率,达到了辅助施工的目的。展开更多
基金supported in part by the National Key R&D Program of China(No.2022YFB3904503)National Natural Science Foundation of China(No.62172418)the joint funds of National Natural Science Foundation of China and Civil Aviation Administration of China(No.U2133203).
文摘Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-Ⅱ civil navigation message(BDⅡ-CNAV) are vulnerable to spoofing attack and replay attack.To solve this problem,we present a security authentication protocol,called as BDSec,which is designed by using China’s cryptography Shangyong Mima(SM) series algorithms,such as SM2/4/9 and Zu Chongzhi(ZUC)algorithm.In BDSec protocol,both of BDⅡ-CNAV and signature information are encrypted using the SM4 algorithm(Symmetric encryption mechanism).The encrypted result is used as the subject authentication information.BDSec protocol applies SM9 algorithm(Identity-based cryptography mechanism) to protect the integrity of the BDⅡ-CNAV,adopts the SM2 algorithm(Public key cryptosystem) to guarantee the confidentiality of the important session information,and uses the ZUC algorithm(Encryption and integrity algorithm) to verify the integrity of the message authentication serial number and initial information and the information in authentication initialization sub-protocol respectively.The results of the SVO logic reasoning and performance analysis show that BDSec protocol meets security requirements for the dual user identity authentication in BDS and can realize the security authentication of BDⅡ-CNAV.
文摘为了分析当前GPS(Global Positioning System)、Galileo(Galileo Navigation Satellite System)和BDS-3(Beidou Navigation Satellite System with Global Coverage)广播星历的精度,详细分析研究了各种偏差改正及消除方法,并尽可能地消除了系统误差和粗差对评估结果的影响。选取2021-11-01/12-31共61天MGEX(multi-GNSS experiment)发布的多系统混合广播星历与武汉大学分析中心发布的事后精密星历数据进行实验,对GPS、Galileo和BDS-3近期广播星历精度进行对比分析,实验结果表明:3个系统广播星历整体精度由高到低依次是Galileo、BDS-3和GPS,其空间信号测距误差的RMS(root mean square)分别优于0.17、0.25和0.37 m,整体轨道精度的RMS分别优于0.17、0.12和0.25 m,BDS-3广播星历的轨道精度最高,钟差误差的RMS分别优于0.15、0.23和0.27 m,Galileo广播星历的钟差精度最高。对于GPS卫星的广播星历,blockⅢA卫星钟差和轨道精度均优于其他GPS类型卫星。
基金Supported by Yunnan Provincial Science and Technology Plan Project(202102AE090051).
文摘Spatiotemporal information,positioning and navigation services have become important elements of new type infrastructure.The rapid development of global digital trade provides a large-scale application scenario for the use of Beidou Navigation Satellite System(BDS)spatiotemporal information to support the certification of origin of agricultural products.The BDS spatiotemporal information agricultural product digital credit system uses such modules as BDS,spatiotemporal information collection,spatiotemporal coding,and spatiotemporal blockchain.It incorporates multi-level joint supervision mechanisms such as government,associations,and users.Starting from the initial production link of agricultural products,it realizes the correspondence and locking of online and offline products,effectively improves the integrity and credibility of information in the production process,finished product quality and circulation process of products,effectively manages the green production and anti-channel conflicts of producers,and provides credible information for consumers,thus realizing the digital credit certification of products.The successful practice of characteristic agricultural products in Yunnan Province has verified the application ability of the BDS spatiotemporal information agricultural product digital credit system.This system has played a significant role in promoting the online and offline locking,credible information,effective supervision and high quality and high price of characteristic agricultural products from the field.The BDS provides services for global digital trade and contributes to the further enhancement of the global application scale of GNSS.
文摘针对当前推土机在作业过程中操作复杂、施工效果评估困难等问题,基于北斗实时动态差分定位(real time kinematic,RTK)技术和运动学方程,求得推土机实时位置;提出了以推土高程和设计平面的高程差作为平整施工质量评价的方法,可直观评价施工效果,研制了驾驶引导装置,可实时显示推土机状态与施工进度。工程应用表明,该装置达到了厘米级的定位精度,定位的绝对误差小于5 cm,满足推土机精准施工的需求;车载显示终端使用RS232通信可精确获取推土机坐标、速度、航向等自身状态参数和施工数据。在实际施工场景中,该系统可有效减少驾驶员返工次数、降低劳动强度,提高了施工效率,达到了辅助施工的目的。