BeiDou regional navigation satellite system (BDS) also called BeiDou-2 has been in full operation since December 27, 2012. It consists of 14 satellites, including 5 satellites in Geostationary Orbit (GEO), 5 satel...BeiDou regional navigation satellite system (BDS) also called BeiDou-2 has been in full operation since December 27, 2012. It consists of 14 satellites, including 5 satellites in Geostationary Orbit (GEO), 5 satellites in Inclined Geosynchronous Orbit (IGSO), and 4 satellites in Medium Earth Orbit (MEO). In this paper, its basic navigation and positioning performance are evaluated preliminarily by the real data collected in Beijing, including satellite visibility, Position Dilution of Precision (PDOP) value, the precision of code and carrier phase measurements, the accuracy of single point positioning and differential position- ing and ambiguity resolution (AR) performance, which are also compared with those of GPS. It is shown that the precision of BDS code and carrier phase measurements are about 33 cm and 2 mm, respectively, which are comparable to those of GPS, and the accuracy of BDS single point positioning has satisfied the design requirement. The real-time kinematic positioning is also feasible by BDS alolae in the opening condition, since its fixed rate and reliability of single-epoch dual-frequency AR is comparable to those of GPS. The accuracy of BDS carrier phase differential positioning is better than 1 cm for a very short baseline of 4.2 m and 3 cm for a short baseline of 8.2 km, which is on the same level with that of GPS. For the combined BDS and GPS, the fixed rate and reliability of single-epoch AR and the positioning accuracy are improved significantly. The accu- racy of BDS/GPS carrier phase differential positioning is about 35 and 20 % better than that of GPS for two short baseline tests in this study. The accuracy of BDS code differential positioning is better than 2.5 m. However it is worse than that of GPS, which may result from large code multipath errors of BDS GEO satellite measurements.展开更多
针对海上遇险报警终端定位精度和实时性不足等问题,设计一种兼具北斗短报文和紧急无线示位标(emergency position indicating radio beacon,EPIRB)功能的海上搜救终端.结合指挥中心和相关软件系统,实现遇险快速上报和精确定位.北斗短报...针对海上遇险报警终端定位精度和实时性不足等问题,设计一种兼具北斗短报文和紧急无线示位标(emergency position indicating radio beacon,EPIRB)功能的海上搜救终端.结合指挥中心和相关软件系统,实现遇险快速上报和精确定位.北斗短报文可以实现终端和卫星之间的通讯.全球卫星搜救系统(COSPAS-SARSAT)是由国际海事卫星组织推行的海上遇险搜救系统的重要组成部分,通过EPIRB发送的信号,来定位事故地点和事故信息.将北斗短报文和EPIRB结合,并联合定位模块和温度、心率等传感器.当持有者遇险时,海上搜救终端会立刻不断向指挥中心发送遇险信息,通过指挥中心解析可对救援任务展开提供支持.经测试,其动态、静态定位精度达到10 m级;具有北斗短报文,紧急无线示位标通讯功能.展开更多
To better improve the emergency communication and location-based services of disaster information reporting network for serious natural response and relieL disaster emergency the national natural disaster reduction ap...To better improve the emergency communication and location-based services of disaster information reporting network for serious natural response and relieL disaster emergency the national natural disaster reduction application platform based on BeiDou navigation satellite system is constructed. The administrative distributed platform is integrated with BeiDou positioning and multiple communication ways so as to achieve main disaster reduction application services, including disaster information acquisition and monitoring, emergency relief for trapped people, on-site emergency relief command service, relief supplies' transportation monitoring, and disaster information publishing service. By the platform, serious disaster information reporting time may be reduced to one hour and the emergency decision-making information service for serious natural disasters can be effectively improved, and it will be helpful to provide technical references for the industrial application and promotion of BeiDou inte- grated disaster reduction.展开更多
Global navigation satellite system occultation sounder (GNOS) Fengyun-3C was launched successfully on September 23, 2013, which carried GPS/BDS receiver for the first time. This provides the convenience to study the e...Global navigation satellite system occultation sounder (GNOS) Fengyun-3C was launched successfully on September 23, 2013, which carried GPS/BDS receiver for the first time. This provides the convenience to study the enhancement results of low earth orbiter satellite (LEO) to BDS precise orbit determination (POD). First the data characteristic and code observation noise of GNOS are analyzed. Then the enhancement experiments in the case of global and regional ground observation stations layout are processed with four POD schemes: BDS single system, GPS/BDS double system, BDS single system with GNOS observations, GPS/BDS double system with GNOS observations. The precision of BDS orbits and clocks are compared via overlapping arcs. Results show that in the case of global station layout the along directional precision of GEO satellite has the biggest improvement, with the improvement percentage 60%. Then the precision of cross direction and the along direction of remaining satellites shows the second biggest improvement. The orbit precision of BDS-only POD in part of observation arcs some satellite even suffers a slight decline. The root mean square (RMS) of overlapping clock difference of visible arcs in GPS/BDS POD experiments improves by 0.1 ns level. As to the experiments of regional station layout with 7 ground stations, the orbit and clock overlapping precision and orbit predicting precision are analyzed. Results show that the predicting precision of BDS GEO satellites in the along direction improves by 85%. The remaining also has a substantial improvement, with the average percentage 21.7%. RMS of overlapping clock difference of visible arcs improves by 0.5 ns level.展开更多
基金sponsored by the National Natural Science Foundation of China(Grant Nos.41020144004,41374019,41104022)the National High Technology Research and Development Program of China(Grant No.2013AA122501)
文摘BeiDou regional navigation satellite system (BDS) also called BeiDou-2 has been in full operation since December 27, 2012. It consists of 14 satellites, including 5 satellites in Geostationary Orbit (GEO), 5 satellites in Inclined Geosynchronous Orbit (IGSO), and 4 satellites in Medium Earth Orbit (MEO). In this paper, its basic navigation and positioning performance are evaluated preliminarily by the real data collected in Beijing, including satellite visibility, Position Dilution of Precision (PDOP) value, the precision of code and carrier phase measurements, the accuracy of single point positioning and differential position- ing and ambiguity resolution (AR) performance, which are also compared with those of GPS. It is shown that the precision of BDS code and carrier phase measurements are about 33 cm and 2 mm, respectively, which are comparable to those of GPS, and the accuracy of BDS single point positioning has satisfied the design requirement. The real-time kinematic positioning is also feasible by BDS alolae in the opening condition, since its fixed rate and reliability of single-epoch dual-frequency AR is comparable to those of GPS. The accuracy of BDS carrier phase differential positioning is better than 1 cm for a very short baseline of 4.2 m and 3 cm for a short baseline of 8.2 km, which is on the same level with that of GPS. For the combined BDS and GPS, the fixed rate and reliability of single-epoch AR and the positioning accuracy are improved significantly. The accu- racy of BDS/GPS carrier phase differential positioning is about 35 and 20 % better than that of GPS for two short baseline tests in this study. The accuracy of BDS code differential positioning is better than 2.5 m. However it is worse than that of GPS, which may result from large code multipath errors of BDS GEO satellite measurements.
文摘针对海上遇险报警终端定位精度和实时性不足等问题,设计一种兼具北斗短报文和紧急无线示位标(emergency position indicating radio beacon,EPIRB)功能的海上搜救终端.结合指挥中心和相关软件系统,实现遇险快速上报和精确定位.北斗短报文可以实现终端和卫星之间的通讯.全球卫星搜救系统(COSPAS-SARSAT)是由国际海事卫星组织推行的海上遇险搜救系统的重要组成部分,通过EPIRB发送的信号,来定位事故地点和事故信息.将北斗短报文和EPIRB结合,并联合定位模块和温度、心率等传感器.当持有者遇险时,海上搜救终端会立刻不断向指挥中心发送遇险信息,通过指挥中心解析可对救援任务展开提供支持.经测试,其动态、静态定位精度达到10 m级;具有北斗短报文,紧急无线示位标通讯功能.
基金supported by National Bei Dou Special Project and National Science & Technology planning project of China (Grant No. 2014BAK12B04)
文摘To better improve the emergency communication and location-based services of disaster information reporting network for serious natural response and relieL disaster emergency the national natural disaster reduction application platform based on BeiDou navigation satellite system is constructed. The administrative distributed platform is integrated with BeiDou positioning and multiple communication ways so as to achieve main disaster reduction application services, including disaster information acquisition and monitoring, emergency relief for trapped people, on-site emergency relief command service, relief supplies' transportation monitoring, and disaster information publishing service. By the platform, serious disaster information reporting time may be reduced to one hour and the emergency decision-making information service for serious natural disasters can be effectively improved, and it will be helpful to provide technical references for the industrial application and promotion of BeiDou inte- grated disaster reduction.
基金The National Natural Science Foundation of China (41674016,41274016,41604024).
文摘Global navigation satellite system occultation sounder (GNOS) Fengyun-3C was launched successfully on September 23, 2013, which carried GPS/BDS receiver for the first time. This provides the convenience to study the enhancement results of low earth orbiter satellite (LEO) to BDS precise orbit determination (POD). First the data characteristic and code observation noise of GNOS are analyzed. Then the enhancement experiments in the case of global and regional ground observation stations layout are processed with four POD schemes: BDS single system, GPS/BDS double system, BDS single system with GNOS observations, GPS/BDS double system with GNOS observations. The precision of BDS orbits and clocks are compared via overlapping arcs. Results show that in the case of global station layout the along directional precision of GEO satellite has the biggest improvement, with the improvement percentage 60%. Then the precision of cross direction and the along direction of remaining satellites shows the second biggest improvement. The orbit precision of BDS-only POD in part of observation arcs some satellite even suffers a slight decline. The root mean square (RMS) of overlapping clock difference of visible arcs in GPS/BDS POD experiments improves by 0.1 ns level. As to the experiments of regional station layout with 7 ground stations, the orbit and clock overlapping precision and orbit predicting precision are analyzed. Results show that the predicting precision of BDS GEO satellites in the along direction improves by 85%. The remaining also has a substantial improvement, with the average percentage 21.7%. RMS of overlapping clock difference of visible arcs improves by 0.5 ns level.