A Beidou 3(BD3)system-based power reference station can provide high-precision time synchronization for power distribution systems by sending synchronization data packets to devices in a multi-hop routing fashion.Howe...A Beidou 3(BD3)system-based power reference station can provide high-precision time synchronization for power distribution systems by sending synchronization data packets to devices in a multi-hop routing fashion.However,optimizing route selection to reduce both time synchronization error and delay is a challenging problem.In this paper,we establish a software-defined network-enabled power reference station time synchronization framework based on BD3.Then,we formulate the joint problem to minimize cumulative synchronization error and delay through multi-hop route selection optimization.A back propagation(BP)neural network-improved intelligent time synchronization route selection algorithm named BP-RS is proposed to learn the optimal route selection,which uses a BP neural network to dynamically adjust the exploration factor to achieve rapid convergence.Simulation results show the superior performance of BP-RS in synchronization delay,synchronization error,and adaptability with changing routing topologies.展开更多
The electrodynamics both in RF with prescribed law of motion and in FR with prescribed structure is considered. Parallel comparison for solutions in “uniformly accelerated” NRF M?ller system and in uniformly acceler...The electrodynamics both in RF with prescribed law of motion and in FR with prescribed structure is considered. Parallel comparison for solutions in “uniformly accelerated” NRF M?ller system and in uniformly accelerated rigid NFR in the space of the constant curvature is carried out. The stationary criterion is formulated. On the basis of this criterion, one of the “eternal physical problems” concerning the field at uniformly accelerated charge motion is considered. The problems of electromagnetic wave spreading, Doppler’s effect and field transformations are discussed.展开更多
The BeiDou Navigation Satellite System (BDS) is essentially a precise time measurement and time synchronization system for a large-scale space near the Earth. General relativity is the basic theoretical framework for ...The BeiDou Navigation Satellite System (BDS) is essentially a precise time measurement and time synchronization system for a large-scale space near the Earth. General relativity is the basic theoretical framework for the information processing in the master control station of BDS. Having introduced the basic conceptions of relativistic space-time reference systems, the space-time references of BDS are analyzed and the function and acquisition method of the Earth Orientation Parameters (EOP) are briefly discussed. The basic space reference of BDS is BeiDou Coordinate System (BDCS), and the time standard is the BDS Time (BDT). BDCS and BDT are the realizations of the Geocentric Terrestrial Reference System (GTRS) and the Terrestrial Time (TT) for BDS, respectively. The station coordinates in the BDCS are consistent with those in International Terrestrial Reference Frame (ITRF)2014 at the cm-level and the difference in scale is about 1.1 × 10^(−8) . The time deviation of BDT relative to International Atomic Time (TAI) is less than 50 ns and the frequency deviation is less than 2 × 10^(−14) . The Geocentric Celestial Reference System (GCRS) and the solar Barycentric Celestial Reference System (BCRS) are also involved in the operation of BDS. The observation models for time synchronization and precise orbit determination are established within the GCRS framework. The coordinate transformation between BDCS and GCRS is consistent with the International Earth Rotation and Reference Systems Service (IERS). In the autonomous operation mode without the support of the ground master control station, Earth Orientation Parameters (EOP) is obtained by means of long-term prediction and on-board observation. The observa-tion models for the on-board astrometry should be established within the BCRS framework.展开更多
Ⅰ. PROBLEM AND RESULTS In physics, in order to describe a motion mathematically one needs a space-time reference system ∑(x, y z; t). From the mathematical point of view, any two reference systems are equivalent, on...Ⅰ. PROBLEM AND RESULTS In physics, in order to describe a motion mathematically one needs a space-time reference system ∑(x, y z; t). From the mathematical point of view, any two reference systems are equivalent, one only needs a transformation between the coordinates of the two systems.展开更多
基金supported by the Science and Technology Project of the China Southern Power Grid Company Limited under grant number GDKJXM20202032。
文摘A Beidou 3(BD3)system-based power reference station can provide high-precision time synchronization for power distribution systems by sending synchronization data packets to devices in a multi-hop routing fashion.However,optimizing route selection to reduce both time synchronization error and delay is a challenging problem.In this paper,we establish a software-defined network-enabled power reference station time synchronization framework based on BD3.Then,we formulate the joint problem to minimize cumulative synchronization error and delay through multi-hop route selection optimization.A back propagation(BP)neural network-improved intelligent time synchronization route selection algorithm named BP-RS is proposed to learn the optimal route selection,which uses a BP neural network to dynamically adjust the exploration factor to achieve rapid convergence.Simulation results show the superior performance of BP-RS in synchronization delay,synchronization error,and adaptability with changing routing topologies.
文摘The electrodynamics both in RF with prescribed law of motion and in FR with prescribed structure is considered. Parallel comparison for solutions in “uniformly accelerated” NRF M?ller system and in uniformly accelerated rigid NFR in the space of the constant curvature is carried out. The stationary criterion is formulated. On the basis of this criterion, one of the “eternal physical problems” concerning the field at uniformly accelerated charge motion is considered. The problems of electromagnetic wave spreading, Doppler’s effect and field transformations are discussed.
基金the grants from the National Natural Science Foundations of China(Grant Nos.11703065,11573054)from the Chinese Ministry of Science and Technology(No.2018YFE0118500).
文摘The BeiDou Navigation Satellite System (BDS) is essentially a precise time measurement and time synchronization system for a large-scale space near the Earth. General relativity is the basic theoretical framework for the information processing in the master control station of BDS. Having introduced the basic conceptions of relativistic space-time reference systems, the space-time references of BDS are analyzed and the function and acquisition method of the Earth Orientation Parameters (EOP) are briefly discussed. The basic space reference of BDS is BeiDou Coordinate System (BDCS), and the time standard is the BDS Time (BDT). BDCS and BDT are the realizations of the Geocentric Terrestrial Reference System (GTRS) and the Terrestrial Time (TT) for BDS, respectively. The station coordinates in the BDCS are consistent with those in International Terrestrial Reference Frame (ITRF)2014 at the cm-level and the difference in scale is about 1.1 × 10^(−8) . The time deviation of BDT relative to International Atomic Time (TAI) is less than 50 ns and the frequency deviation is less than 2 × 10^(−14) . The Geocentric Celestial Reference System (GCRS) and the solar Barycentric Celestial Reference System (BCRS) are also involved in the operation of BDS. The observation models for time synchronization and precise orbit determination are established within the GCRS framework. The coordinate transformation between BDCS and GCRS is consistent with the International Earth Rotation and Reference Systems Service (IERS). In the autonomous operation mode without the support of the ground master control station, Earth Orientation Parameters (EOP) is obtained by means of long-term prediction and on-board observation. The observa-tion models for the on-board astrometry should be established within the BCRS framework.
文摘Ⅰ. PROBLEM AND RESULTS In physics, in order to describe a motion mathematically one needs a space-time reference system ∑(x, y z; t). From the mathematical point of view, any two reference systems are equivalent, one only needs a transformation between the coordinates of the two systems.