Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-Ⅱ civil navigation message(BDⅡ-CNAV) are vulnerable to spoofing attack and replay attack.To solve this problem,we present a s...Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-Ⅱ civil navigation message(BDⅡ-CNAV) are vulnerable to spoofing attack and replay attack.To solve this problem,we present a security authentication protocol,called as BDSec,which is designed by using China’s cryptography Shangyong Mima(SM) series algorithms,such as SM2/4/9 and Zu Chongzhi(ZUC)algorithm.In BDSec protocol,both of BDⅡ-CNAV and signature information are encrypted using the SM4 algorithm(Symmetric encryption mechanism).The encrypted result is used as the subject authentication information.BDSec protocol applies SM9 algorithm(Identity-based cryptography mechanism) to protect the integrity of the BDⅡ-CNAV,adopts the SM2 algorithm(Public key cryptosystem) to guarantee the confidentiality of the important session information,and uses the ZUC algorithm(Encryption and integrity algorithm) to verify the integrity of the message authentication serial number and initial information and the information in authentication initialization sub-protocol respectively.The results of the SVO logic reasoning and performance analysis show that BDSec protocol meets security requirements for the dual user identity authentication in BDS and can realize the security authentication of BDⅡ-CNAV.展开更多
A longitudinal accumulation scheme based on a triple-frequency RF system,in which the static radio frequency(RF)bucket is lengthened to be compatible with the realizable raise time of a fast pulse kicker,is proposed i...A longitudinal accumulation scheme based on a triple-frequency RF system,in which the static radio frequency(RF)bucket is lengthened to be compatible with the realizable raise time of a fast pulse kicker,is proposed in this paper.With this technique,the bunch from a booster can be captured by the longitudinal acceptance without any disturbance to the stored bunch,which remains at the center.This composite RF system consists of three different frequencies,which can be regarded as the conventional bunch lengthening RF system(usually containing fundamental and third harmonic cavities)extended by an additional second harmonic RF cavity.In this paper,we discuss the RF jitter and the transverse mode-coupling instability(TMCI)when using this special RF system.Considering several different bunch profiles,we discuss the beam stability with regard to the RF jitter.However,for the TMCI we assume an ideal bunch profile,where the bunch is exactly lengthened to the maximum extent.While macroparticle simulation is the main method used to study the impact of the RF jitter,numerical analysis and simulations for the TMCI while using a triple-frequency RF system are also presented in this paper.An approximation formula,based on the existing model,is also derived to estimate the impact of the TMCI on the single bunch current threshold when using harmonic cavities.展开更多
随着中国BeiDou系统与欧盟Galileo系统的出现以及俄罗斯GLONASS系统的恢复完善,过去单一的GPS导航卫星系统时代已经逐步过渡为多系统并存且相互兼容的全球性卫星导航系统(multi-constellation global navigation satellite systems,mul...随着中国BeiDou系统与欧盟Galileo系统的出现以及俄罗斯GLONASS系统的恢复完善,过去单一的GPS导航卫星系统时代已经逐步过渡为多系统并存且相互兼容的全球性卫星导航系统(multi-constellation global navigation satellite systems,multi-GNSS)时代,多系统GNSS融合精密定位将成为未来GNSS精密定位技术的发展趋势。本文采用GPS、GLONASS、BeiDou、Galileo 4大卫星导航定位系统融合的精密单点定位(precise point positioning,PPP)实测数据,初步研究并分析了4系统融合PPP的定位性能。试验结果表明:在单系统观测几何构型不理想的区域,多系统融合能显著提高PPP的定位精度和收敛速度。4大系统融合的PPP收敛速度相对于单GNSS可提高30%~50%,定位精度可提高10%~30%,特别是对高程方向的贡献更为明显。此外,在卫星截止高度角大于30°的观测环境下,单系统由于可见卫星数不足导致无法连续定位,而多系统融合仍然可以获得PPP定位结果,尤其是水平方向具有较高的定位精度。这对于山区、城市以及遮挡严重的区域具有非常重要的应用价值。展开更多
基金supported in part by the National Key R&D Program of China(No.2022YFB3904503)National Natural Science Foundation of China(No.62172418)the joint funds of National Natural Science Foundation of China and Civil Aviation Administration of China(No.U2133203).
文摘Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-Ⅱ civil navigation message(BDⅡ-CNAV) are vulnerable to spoofing attack and replay attack.To solve this problem,we present a security authentication protocol,called as BDSec,which is designed by using China’s cryptography Shangyong Mima(SM) series algorithms,such as SM2/4/9 and Zu Chongzhi(ZUC)algorithm.In BDSec protocol,both of BDⅡ-CNAV and signature information are encrypted using the SM4 algorithm(Symmetric encryption mechanism).The encrypted result is used as the subject authentication information.BDSec protocol applies SM9 algorithm(Identity-based cryptography mechanism) to protect the integrity of the BDⅡ-CNAV,adopts the SM2 algorithm(Public key cryptosystem) to guarantee the confidentiality of the important session information,and uses the ZUC algorithm(Encryption and integrity algorithm) to verify the integrity of the message authentication serial number and initial information and the information in authentication initialization sub-protocol respectively.The results of the SVO logic reasoning and performance analysis show that BDSec protocol meets security requirements for the dual user identity authentication in BDS and can realize the security authentication of BDⅡ-CNAV.
文摘A longitudinal accumulation scheme based on a triple-frequency RF system,in which the static radio frequency(RF)bucket is lengthened to be compatible with the realizable raise time of a fast pulse kicker,is proposed in this paper.With this technique,the bunch from a booster can be captured by the longitudinal acceptance without any disturbance to the stored bunch,which remains at the center.This composite RF system consists of three different frequencies,which can be regarded as the conventional bunch lengthening RF system(usually containing fundamental and third harmonic cavities)extended by an additional second harmonic RF cavity.In this paper,we discuss the RF jitter and the transverse mode-coupling instability(TMCI)when using this special RF system.Considering several different bunch profiles,we discuss the beam stability with regard to the RF jitter.However,for the TMCI we assume an ideal bunch profile,where the bunch is exactly lengthened to the maximum extent.While macroparticle simulation is the main method used to study the impact of the RF jitter,numerical analysis and simulations for the TMCI while using a triple-frequency RF system are also presented in this paper.An approximation formula,based on the existing model,is also derived to estimate the impact of the TMCI on the single bunch current threshold when using harmonic cavities.
文摘随着中国BeiDou系统与欧盟Galileo系统的出现以及俄罗斯GLONASS系统的恢复完善,过去单一的GPS导航卫星系统时代已经逐步过渡为多系统并存且相互兼容的全球性卫星导航系统(multi-constellation global navigation satellite systems,multi-GNSS)时代,多系统GNSS融合精密定位将成为未来GNSS精密定位技术的发展趋势。本文采用GPS、GLONASS、BeiDou、Galileo 4大卫星导航定位系统融合的精密单点定位(precise point positioning,PPP)实测数据,初步研究并分析了4系统融合PPP的定位性能。试验结果表明:在单系统观测几何构型不理想的区域,多系统融合能显著提高PPP的定位精度和收敛速度。4大系统融合的PPP收敛速度相对于单GNSS可提高30%~50%,定位精度可提高10%~30%,特别是对高程方向的贡献更为明显。此外,在卫星截止高度角大于30°的观测环境下,单系统由于可见卫星数不足导致无法连续定位,而多系统融合仍然可以获得PPP定位结果,尤其是水平方向具有较高的定位精度。这对于山区、城市以及遮挡严重的区域具有非常重要的应用价值。