Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-Ⅱ civil navigation message(BDⅡ-CNAV) are vulnerable to spoofing attack and replay attack.To solve this problem,we present a s...Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-Ⅱ civil navigation message(BDⅡ-CNAV) are vulnerable to spoofing attack and replay attack.To solve this problem,we present a security authentication protocol,called as BDSec,which is designed by using China’s cryptography Shangyong Mima(SM) series algorithms,such as SM2/4/9 and Zu Chongzhi(ZUC)algorithm.In BDSec protocol,both of BDⅡ-CNAV and signature information are encrypted using the SM4 algorithm(Symmetric encryption mechanism).The encrypted result is used as the subject authentication information.BDSec protocol applies SM9 algorithm(Identity-based cryptography mechanism) to protect the integrity of the BDⅡ-CNAV,adopts the SM2 algorithm(Public key cryptosystem) to guarantee the confidentiality of the important session information,and uses the ZUC algorithm(Encryption and integrity algorithm) to verify the integrity of the message authentication serial number and initial information and the information in authentication initialization sub-protocol respectively.The results of the SVO logic reasoning and performance analysis show that BDSec protocol meets security requirements for the dual user identity authentication in BDS and can realize the security authentication of BDⅡ-CNAV.展开更多
Unmanned aerial vehicles(UAVs)may be subjected to unintentional radio frequency interference(RFI)or hostile jamming attack which will lead to fail to track global navigation satellite system(GNSS)signals.Therefore,the...Unmanned aerial vehicles(UAVs)may be subjected to unintentional radio frequency interference(RFI)or hostile jamming attack which will lead to fail to track global navigation satellite system(GNSS)signals.Therefore,the simultaneous realization of anti-jamming and high-precision carrier phase difference positioning becomes a dilemmatic problem.In this paper,a distortionless phase digital beamforming(DBF)algorithm with self-calibration antenna arrays is proposed,which enables to obtain distortionless carrier phase while suppressing jamming.Additionally,architecture of high precision Beidou receiver based on anti-jamming antenna arrays is proposed.Finally,the performance of the algorithm is evaluated,including antenna calibration accuracy,carrier phase distortionless accuracy,and carrier phase measurement accuracy without jamming.Meanwhile,the maximal jamming to signal ratio(JSR)and real time kinematic(RTK)positioning accuracy under wideband jamming are also investigated.The experimental results based on the real-life Beidou signals show that the proposed method has an excellent performance for precise relative positioning under jamming when compared with other anti-jamming methods.展开更多
随着中国BeiDou系统与欧盟Galileo系统的出现以及俄罗斯GLONASS系统的恢复完善,过去单一的GPS导航卫星系统时代已经逐步过渡为多系统并存且相互兼容的全球性卫星导航系统(multi-constellation global navigation satellite systems,mul...随着中国BeiDou系统与欧盟Galileo系统的出现以及俄罗斯GLONASS系统的恢复完善,过去单一的GPS导航卫星系统时代已经逐步过渡为多系统并存且相互兼容的全球性卫星导航系统(multi-constellation global navigation satellite systems,multi-GNSS)时代,多系统GNSS融合精密定位将成为未来GNSS精密定位技术的发展趋势。本文采用GPS、GLONASS、BeiDou、Galileo 4大卫星导航定位系统融合的精密单点定位(precise point positioning,PPP)实测数据,初步研究并分析了4系统融合PPP的定位性能。试验结果表明:在单系统观测几何构型不理想的区域,多系统融合能显著提高PPP的定位精度和收敛速度。4大系统融合的PPP收敛速度相对于单GNSS可提高30%~50%,定位精度可提高10%~30%,特别是对高程方向的贡献更为明显。此外,在卫星截止高度角大于30°的观测环境下,单系统由于可见卫星数不足导致无法连续定位,而多系统融合仍然可以获得PPP定位结果,尤其是水平方向具有较高的定位精度。这对于山区、城市以及遮挡严重的区域具有非常重要的应用价值。展开更多
The fiber strapdown inertial navigation system (FSINS)/dead reckoning (DR)/Beidou double-star integrated navigation scheme is proposed aiming at the need of land fighting-vehicle independence positioning. The meas...The fiber strapdown inertial navigation system (FSINS)/dead reckoning (DR)/Beidou double-star integrated navigation scheme is proposed aiming at the need of land fighting-vehicle independence positioning. The measurement information fusion technology is studied by introducing the FSINS/DR/Beidou double-star integrated scheme. Several specific methods for the information fusion are discussed, and a Kalman filter is designed for the information fusion. Experimental results show that the design of the integrated scheme can improve the positioning accuracy of the navigation system.展开更多
This paper presents a novel approach for assessing the precision of the wet refractivity field using BDS (BeiDou navigation satellite system) simulations only,GPS,and BDS+GPS for the Shenzhen and Hongkong GNSS netw...This paper presents a novel approach for assessing the precision of the wet refractivity field using BDS (BeiDou navigation satellite system) simulations only,GPS,and BDS+GPS for the Shenzhen and Hongkong GNSS network.The simulations are carried out by adding artificial noise to a real observation dataset.Instead of using the δ and σ parameters computed from slant wet delay,as in previous studies,we employ the Bias and RMS parameters,computed from the tomography results of total voxels,in order to obtain a more direct and comprehensive evaluation of the precision of the refractivity field determination.The results show that:(1) the precision of tropospheric wet refractivity estimated using BDS alone (only 9 satellites used) is basically comparable to that of GPS; (2) BDS+GPS (as of current operation) may not be able to significantly improve the data's spatial density for the application of refractivity tomography; and (3) any slight increase in the precision of refractivity tomography,particularly in the lower atmosphere,bears great significance for any applications dependent on the Chinese operational meteorological service.展开更多
This paper introduces the Chinese BeiDou satellite system and its comparison with the actual completed American GPS and the Russian GLONASS systems. The actual BeiDou system consists of 14 satellites covering totally ...This paper introduces the Chinese BeiDou satellite system and its comparison with the actual completed American GPS and the Russian GLONASS systems. The actual BeiDou system consists of 14 satellites covering totally the Asia-Pacific area. A Single Point Positioning (SPP) test has been realised in Changsha, Hunan province, China, to show the advantage of using combined pseudorange solutions from these 3 satellite navigation systems especially in obstructed sites. The test shows that, with an elevation mask angle of 10°, the accuracy is improved by about 20% in horizontal coordinates and nearly 50% in the vertical component using the simultaneous observations of the 3 systems compared to the GPS/GLONASS solution. For the processing with an elevation mask angle of 30°, most of the time less than 4 GPS satellites were available for the GPS-only case and no solution was possible. However, in this difficult situation, the combined GPS/GLONASS/ BeiDou solutions provided an accuracy (rms values) of about 5 m.展开更多
Inter-satellite link(ISL)scheduling is required by the BeiDou Navigation Satellite System(BDS)to guarantee the system ranging and communication performance.In the BDS,a great number of ISL scheduling instances must be...Inter-satellite link(ISL)scheduling is required by the BeiDou Navigation Satellite System(BDS)to guarantee the system ranging and communication performance.In the BDS,a great number of ISL scheduling instances must be addressed every day,which will certainly spend a lot of time via normal metaheuristics and hardly meet the quick-response requirements that often occur in real-world applications.To address the dual requirements of normal and quick-response ISL schedulings,a data-driven heuristic assisted memetic algorithm(DHMA)is proposed in this paper,which includes a high-performance memetic algorithm(MA)and a data-driven heuristic.In normal situations,the high-performance MA that hybridizes parallelism,competition,and evolution strategies is performed for high-quality ISL scheduling solutions over time.When in quick-response situations,the data-driven heuristic is performed to quickly schedule high-probability ISLs according to a prediction model,which is trained from the high-quality MA solutions.The main idea of the DHMA is to address normal and quick-response schedulings separately,while high-quality normal scheduling data are trained for quick-response use.In addition,this paper also presents an easy-to-understand ISL scheduling model and its NP-completeness.A seven-day experimental study with 10080 one-minute ISL scheduling instances shows the efficient performance of the DHMA in addressing the ISL scheduling in normal(in 84 hours)and quick-response(in 0.62 hour)situations,which can well meet the dual scheduling requirements in real-world BDS applications.展开更多
Due to the civil BeiDou navigation system is open,unauthenticated,and non-encrypted,civilian BeiDou navigation signals may have great security loopholes during transmission or reception.The main security loophole here...Due to the civil BeiDou navigation system is open,unauthenticated,and non-encrypted,civilian BeiDou navigation signals may have great security loopholes during transmission or reception.The main security loophole here is spoofing attacks.Spoofing attacks make the positioning or timing results of BeiDou civilian receivers wrong.Such errors may cause a series of security problems,which lays a serious hidden danger for Bei-Dou satellite information security.This article proposes an anti-spoofing method for BeiDou navigation system based on the combination of SM commercial cryptographic algorithm and Timed Efficient Stream Loss-tolerant Authentication(TESLA)for spoofing attacks.In this solution,we use the SM3 algorithm to generate a TESLA key chain with time information,and then use the key in the key chain to generate the message authentication code for the BeiDou D2 navigation message.The message authentication code is inserted into a reserved bit of the D2 navigation message.In addition,this solution uses the SM2 algorithm to protect and encrypt time information in the TESLA key chain to prevent key replay attacks in TESLA.The experimental results tested on the experimental platform built in this paper show that this scheme reduces the possibility of the BeiDou navigation system being deceived and enhances the safety of the BeiDou navigation system.展开更多
Precise Point Positioning (PPP) is traditionally based on dual-frequency observations of GPS or GPS/GLONASS satellite navigation systems. Recently, new GNSS constellations, such as the European Galileo and the Chinese...Precise Point Positioning (PPP) is traditionally based on dual-frequency observations of GPS or GPS/GLONASS satellite navigation systems. Recently, new GNSS constellations, such as the European Galileo and the Chinese BeiDou are developing rapidly. With the new IGS project known as IGS MGEX which produces highly accurate GNSS orbital and clock products, multi-constellations PPP becomes feasible. On the other hand, the un-differenced ionosphere-free is commonly used as standard precise point positioning technique. However, the existence of receiver and satellite biases, which are absorbed by the ambiguities, significantly affected the convergence time. Between-satellite-single-difference (BSSD) ionosphere free PPP technique is traditionally used to cancel out the receiver related biases from both code and phase measurements. This paper introduces multiple ambiguity datum (MAD) PPP technique which can be applied to separate the code and phase measurements removing the receiver and satellite code biases affecting the GNSS receiver phase clock and ambiguities parameters. The mathematical model for the three GNSS PPP techniques is developed by considering the current full GNSS constellations. In addition, the current limitations of the GNSS PPP techniques are discussed. Static post-processing results for a number of IGS MGEX GNSS stations are presented to investigate the contribution of the newly GNSS system observations and the newly developed GNSS PPP techniques and its limitations. The results indicate that the additional Galileo and BeiDou observations have a marginal effect on the positioning accuracy and convergence time compared with the existence combined GPS/GLONASS PPP. However, reference to GPS PPP, the contribution of BeiDou observations can be considered geographically dependent. In addition, the results show that the BSSD PPP models slightly enhance the convergence time compared with other PPP techniques. However, both the standard un-differenced and the developed multiple ambiguity datum techniques present comparable positioning accuracy and convergence time due to the lack of code and phase-based satellite clock products and the mathematical correlation between the positioning and ambiguity parameters.展开更多
The BeiDou software receiver uses the fast Fourier transform(FFT)to perform the acquisition.The Doppler shift estimation accuracy should be less than 500 Hz to ensure satellite signals to enter a locked state in the t...The BeiDou software receiver uses the fast Fourier transform(FFT)to perform the acquisition.The Doppler shift estimation accuracy should be less than 500 Hz to ensure satellite signals to enter a locked state in the tracking loop.Since the frequency step is usually 500 Hz or larger,the Doppler shift estimation accuracy cannot guarantee that satellite signals are brought into a stable tracking state.The straightforward solutions consist in increasing the sampling time and using zero-padding to improve the frequency resolution of the FFT.However,these solutions intensify the complexity and amount of computation.The contradiction between the acquisition accuracy and the computational load leads us to research for a more simple and effective algorithm,which achieves fine acquisition by a look-up table.After coarse acquisition using the parallel frequency acquisition(PFA)algorithm,the proposed algorithm optimizes the Doppler shift estimation through the look-up table method based on the FFT results to improve the acquisition accuracy of the Doppler shift with a minimal additional computing load.When the Doppler shift is within the queryable range of the table,the proposed algorithm can improve the Doppler shift estimation accuracy to 50 Hz for the BeiDou B1I signal.展开更多
To better improve the emergency communication and location-based services of disaster information reporting network for serious natural response and relieL disaster emergency the national natural disaster reduction ap...To better improve the emergency communication and location-based services of disaster information reporting network for serious natural response and relieL disaster emergency the national natural disaster reduction application platform based on BeiDou navigation satellite system is constructed. The administrative distributed platform is integrated with BeiDou positioning and multiple communication ways so as to achieve main disaster reduction application services, including disaster information acquisition and monitoring, emergency relief for trapped people, on-site emergency relief command service, relief supplies' transportation monitoring, and disaster information publishing service. By the platform, serious disaster information reporting time may be reduced to one hour and the emergency decision-making information service for serious natural disasters can be effectively improved, and it will be helpful to provide technical references for the industrial application and promotion of BeiDou inte- grated disaster reduction.展开更多
This paper introduces a new dual-frequency precise point positioning (PPP) model, which combines the observations of three different GNSS constellations, namely GPS, Galileo, and BeiDou. Our model is based on between-...This paper introduces a new dual-frequency precise point positioning (PPP) model, which combines the observations of three different GNSS constellations, namely GPS, Galileo, and BeiDou. Our model is based on between-satellite single-difference (BSSD) linear combination, which cancels out some receiver-related biases, including receiver clock error and non-zero initial phase bias of the receiver oscillator. The reference satellite can be selected from any satellite system GPS, Galileo, and BeiDou when forming BSSD linear combinations. Natural Resources Canada’s GPS Pace PPP software is modified to enable a combined GPS, Galileo, and BeiDou PPP solution and to handle the newly introduced biases. A total of four data sets at four IGS stations are processed to verify the developed PPP model. Precise satellite orbit and clock products from the IGS-MGEX network are used to correct both of the GPS and Galileo measurements. It is shown that using the BSSD linear combinations improves the precision of the estimated parameters by about 25% compared with the GPS-only PPP solution. Additionally, the solution convergence time is reduced to 10 minutes for both BSSD scenarios, which represent about 50% improvement in comparison with the GPS-only PPP solution.展开更多
基金supported in part by the National Key R&D Program of China(No.2022YFB3904503)National Natural Science Foundation of China(No.62172418)the joint funds of National Natural Science Foundation of China and Civil Aviation Administration of China(No.U2133203).
文摘Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-Ⅱ civil navigation message(BDⅡ-CNAV) are vulnerable to spoofing attack and replay attack.To solve this problem,we present a security authentication protocol,called as BDSec,which is designed by using China’s cryptography Shangyong Mima(SM) series algorithms,such as SM2/4/9 and Zu Chongzhi(ZUC)algorithm.In BDSec protocol,both of BDⅡ-CNAV and signature information are encrypted using the SM4 algorithm(Symmetric encryption mechanism).The encrypted result is used as the subject authentication information.BDSec protocol applies SM9 algorithm(Identity-based cryptography mechanism) to protect the integrity of the BDⅡ-CNAV,adopts the SM2 algorithm(Public key cryptosystem) to guarantee the confidentiality of the important session information,and uses the ZUC algorithm(Encryption and integrity algorithm) to verify the integrity of the message authentication serial number and initial information and the information in authentication initialization sub-protocol respectively.The results of the SVO logic reasoning and performance analysis show that BDSec protocol meets security requirements for the dual user identity authentication in BDS and can realize the security authentication of BDⅡ-CNAV.
基金supported by the Key Research and Development Program of Science&Technology Department of Sichuan Province(2021YFG0155)the Technical Innovation Fund of Southwest China Institute of Electronic Technology(H21004.2).
文摘Unmanned aerial vehicles(UAVs)may be subjected to unintentional radio frequency interference(RFI)or hostile jamming attack which will lead to fail to track global navigation satellite system(GNSS)signals.Therefore,the simultaneous realization of anti-jamming and high-precision carrier phase difference positioning becomes a dilemmatic problem.In this paper,a distortionless phase digital beamforming(DBF)algorithm with self-calibration antenna arrays is proposed,which enables to obtain distortionless carrier phase while suppressing jamming.Additionally,architecture of high precision Beidou receiver based on anti-jamming antenna arrays is proposed.Finally,the performance of the algorithm is evaluated,including antenna calibration accuracy,carrier phase distortionless accuracy,and carrier phase measurement accuracy without jamming.Meanwhile,the maximal jamming to signal ratio(JSR)and real time kinematic(RTK)positioning accuracy under wideband jamming are also investigated.The experimental results based on the real-life Beidou signals show that the proposed method has an excellent performance for precise relative positioning under jamming when compared with other anti-jamming methods.
文摘随着中国BeiDou系统与欧盟Galileo系统的出现以及俄罗斯GLONASS系统的恢复完善,过去单一的GPS导航卫星系统时代已经逐步过渡为多系统并存且相互兼容的全球性卫星导航系统(multi-constellation global navigation satellite systems,multi-GNSS)时代,多系统GNSS融合精密定位将成为未来GNSS精密定位技术的发展趋势。本文采用GPS、GLONASS、BeiDou、Galileo 4大卫星导航定位系统融合的精密单点定位(precise point positioning,PPP)实测数据,初步研究并分析了4系统融合PPP的定位性能。试验结果表明:在单系统观测几何构型不理想的区域,多系统融合能显著提高PPP的定位精度和收敛速度。4大系统融合的PPP收敛速度相对于单GNSS可提高30%~50%,定位精度可提高10%~30%,特别是对高程方向的贡献更为明显。此外,在卫星截止高度角大于30°的观测环境下,单系统由于可见卫星数不足导致无法连续定位,而多系统融合仍然可以获得PPP定位结果,尤其是水平方向具有较高的定位精度。这对于山区、城市以及遮挡严重的区域具有非常重要的应用价值。
文摘The fiber strapdown inertial navigation system (FSINS)/dead reckoning (DR)/Beidou double-star integrated navigation scheme is proposed aiming at the need of land fighting-vehicle independence positioning. The measurement information fusion technology is studied by introducing the FSINS/DR/Beidou double-star integrated scheme. Several specific methods for the information fusion are discussed, and a Kalman filter is designed for the information fusion. Experimental results show that the design of the integrated scheme can improve the positioning accuracy of the navigation system.
基金supported by the National Basic ResearchDevelopment (973) Program of China (Grant No. 2012CB955903)+1 种基金the National Natural Science Foundation of China (Grant No. 20907047 and Grant No. 71373131)National Industry-specific Topics (Grant No.GYHY 201406078)
文摘This paper presents a novel approach for assessing the precision of the wet refractivity field using BDS (BeiDou navigation satellite system) simulations only,GPS,and BDS+GPS for the Shenzhen and Hongkong GNSS network.The simulations are carried out by adding artificial noise to a real observation dataset.Instead of using the δ and σ parameters computed from slant wet delay,as in previous studies,we employ the Bias and RMS parameters,computed from the tomography results of total voxels,in order to obtain a more direct and comprehensive evaluation of the precision of the refractivity field determination.The results show that:(1) the precision of tropospheric wet refractivity estimated using BDS alone (only 9 satellites used) is basically comparable to that of GPS; (2) BDS+GPS (as of current operation) may not be able to significantly improve the data's spatial density for the application of refractivity tomography; and (3) any slight increase in the precision of refractivity tomography,particularly in the lower atmosphere,bears great significance for any applications dependent on the Chinese operational meteorological service.
文摘This paper introduces the Chinese BeiDou satellite system and its comparison with the actual completed American GPS and the Russian GLONASS systems. The actual BeiDou system consists of 14 satellites covering totally the Asia-Pacific area. A Single Point Positioning (SPP) test has been realised in Changsha, Hunan province, China, to show the advantage of using combined pseudorange solutions from these 3 satellite navigation systems especially in obstructed sites. The test shows that, with an elevation mask angle of 10°, the accuracy is improved by about 20% in horizontal coordinates and nearly 50% in the vertical component using the simultaneous observations of the 3 systems compared to the GPS/GLONASS solution. For the processing with an elevation mask angle of 30°, most of the time less than 4 GPS satellites were available for the GPS-only case and no solution was possible. However, in this difficult situation, the combined GPS/GLONASS/ BeiDou solutions provided an accuracy (rms values) of about 5 m.
基金supported by the National Natural Science Foundation of China(61773120)the National Natural Science Fund for Distinguished Young Scholars of China(61525304)+2 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of China(2014-92)the Hunan Postgraduate Research Innovation Project(CX2018B022)the China Scholarship Council-Leiden University Scholarship。
文摘Inter-satellite link(ISL)scheduling is required by the BeiDou Navigation Satellite System(BDS)to guarantee the system ranging and communication performance.In the BDS,a great number of ISL scheduling instances must be addressed every day,which will certainly spend a lot of time via normal metaheuristics and hardly meet the quick-response requirements that often occur in real-world applications.To address the dual requirements of normal and quick-response ISL schedulings,a data-driven heuristic assisted memetic algorithm(DHMA)is proposed in this paper,which includes a high-performance memetic algorithm(MA)and a data-driven heuristic.In normal situations,the high-performance MA that hybridizes parallelism,competition,and evolution strategies is performed for high-quality ISL scheduling solutions over time.When in quick-response situations,the data-driven heuristic is performed to quickly schedule high-probability ISLs according to a prediction model,which is trained from the high-quality MA solutions.The main idea of the DHMA is to address normal and quick-response schedulings separately,while high-quality normal scheduling data are trained for quick-response use.In addition,this paper also presents an easy-to-understand ISL scheduling model and its NP-completeness.A seven-day experimental study with 10080 one-minute ISL scheduling instances shows the efficient performance of the DHMA in addressing the ISL scheduling in normal(in 84 hours)and quick-response(in 0.62 hour)situations,which can well meet the dual scheduling requirements in real-world BDS applications.
基金supported in part by the Joint Foundation of National Natural Science Committee of China and Civil Aviation Administration of China under Grant U1933108in part by the Scientific Research Project of Tianjin Municipal Education Commission under Grant 2019KJ117.
文摘Due to the civil BeiDou navigation system is open,unauthenticated,and non-encrypted,civilian BeiDou navigation signals may have great security loopholes during transmission or reception.The main security loophole here is spoofing attacks.Spoofing attacks make the positioning or timing results of BeiDou civilian receivers wrong.Such errors may cause a series of security problems,which lays a serious hidden danger for Bei-Dou satellite information security.This article proposes an anti-spoofing method for BeiDou navigation system based on the combination of SM commercial cryptographic algorithm and Timed Efficient Stream Loss-tolerant Authentication(TESLA)for spoofing attacks.In this solution,we use the SM3 algorithm to generate a TESLA key chain with time information,and then use the key in the key chain to generate the message authentication code for the BeiDou D2 navigation message.The message authentication code is inserted into a reserved bit of the D2 navigation message.In addition,this solution uses the SM2 algorithm to protect and encrypt time information in the TESLA key chain to prevent key replay attacks in TESLA.The experimental results tested on the experimental platform built in this paper show that this scheme reduces the possibility of the BeiDou navigation system being deceived and enhances the safety of the BeiDou navigation system.
文摘Precise Point Positioning (PPP) is traditionally based on dual-frequency observations of GPS or GPS/GLONASS satellite navigation systems. Recently, new GNSS constellations, such as the European Galileo and the Chinese BeiDou are developing rapidly. With the new IGS project known as IGS MGEX which produces highly accurate GNSS orbital and clock products, multi-constellations PPP becomes feasible. On the other hand, the un-differenced ionosphere-free is commonly used as standard precise point positioning technique. However, the existence of receiver and satellite biases, which are absorbed by the ambiguities, significantly affected the convergence time. Between-satellite-single-difference (BSSD) ionosphere free PPP technique is traditionally used to cancel out the receiver related biases from both code and phase measurements. This paper introduces multiple ambiguity datum (MAD) PPP technique which can be applied to separate the code and phase measurements removing the receiver and satellite code biases affecting the GNSS receiver phase clock and ambiguities parameters. The mathematical model for the three GNSS PPP techniques is developed by considering the current full GNSS constellations. In addition, the current limitations of the GNSS PPP techniques are discussed. Static post-processing results for a number of IGS MGEX GNSS stations are presented to investigate the contribution of the newly GNSS system observations and the newly developed GNSS PPP techniques and its limitations. The results indicate that the additional Galileo and BeiDou observations have a marginal effect on the positioning accuracy and convergence time compared with the existence combined GPS/GLONASS PPP. However, reference to GPS PPP, the contribution of BeiDou observations can be considered geographically dependent. In addition, the results show that the BSSD PPP models slightly enhance the convergence time compared with other PPP techniques. However, both the standard un-differenced and the developed multiple ambiguity datum techniques present comparable positioning accuracy and convergence time due to the lack of code and phase-based satellite clock products and the mathematical correlation between the positioning and ambiguity parameters.
基金the Open Project of State Key Laboratory of Automotive Simulation and Control,Jilin University(20161108)the National Natural Science Foundation of China(51505221)the Fundamental Research Funds for the Central Universities(NS2019022).
文摘The BeiDou software receiver uses the fast Fourier transform(FFT)to perform the acquisition.The Doppler shift estimation accuracy should be less than 500 Hz to ensure satellite signals to enter a locked state in the tracking loop.Since the frequency step is usually 500 Hz or larger,the Doppler shift estimation accuracy cannot guarantee that satellite signals are brought into a stable tracking state.The straightforward solutions consist in increasing the sampling time and using zero-padding to improve the frequency resolution of the FFT.However,these solutions intensify the complexity and amount of computation.The contradiction between the acquisition accuracy and the computational load leads us to research for a more simple and effective algorithm,which achieves fine acquisition by a look-up table.After coarse acquisition using the parallel frequency acquisition(PFA)algorithm,the proposed algorithm optimizes the Doppler shift estimation through the look-up table method based on the FFT results to improve the acquisition accuracy of the Doppler shift with a minimal additional computing load.When the Doppler shift is within the queryable range of the table,the proposed algorithm can improve the Doppler shift estimation accuracy to 50 Hz for the BeiDou B1I signal.
基金supported by National Bei Dou Special Project and National Science & Technology planning project of China (Grant No. 2014BAK12B04)
文摘To better improve the emergency communication and location-based services of disaster information reporting network for serious natural response and relieL disaster emergency the national natural disaster reduction application platform based on BeiDou navigation satellite system is constructed. The administrative distributed platform is integrated with BeiDou positioning and multiple communication ways so as to achieve main disaster reduction application services, including disaster information acquisition and monitoring, emergency relief for trapped people, on-site emergency relief command service, relief supplies' transportation monitoring, and disaster information publishing service. By the platform, serious disaster information reporting time may be reduced to one hour and the emergency decision-making information service for serious natural disasters can be effectively improved, and it will be helpful to provide technical references for the industrial application and promotion of BeiDou inte- grated disaster reduction.
文摘This paper introduces a new dual-frequency precise point positioning (PPP) model, which combines the observations of three different GNSS constellations, namely GPS, Galileo, and BeiDou. Our model is based on between-satellite single-difference (BSSD) linear combination, which cancels out some receiver-related biases, including receiver clock error and non-zero initial phase bias of the receiver oscillator. The reference satellite can be selected from any satellite system GPS, Galileo, and BeiDou when forming BSSD linear combinations. Natural Resources Canada’s GPS Pace PPP software is modified to enable a combined GPS, Galileo, and BeiDou PPP solution and to handle the newly introduced biases. A total of four data sets at four IGS stations are processed to verify the developed PPP model. Precise satellite orbit and clock products from the IGS-MGEX network are used to correct both of the GPS and Galileo measurements. It is shown that using the BSSD linear combinations improves the precision of the estimated parameters by about 25% compared with the GPS-only PPP solution. Additionally, the solution convergence time is reduced to 10 minutes for both BSSD scenarios, which represent about 50% improvement in comparison with the GPS-only PPP solution.