The Beijing spectrometer Ⅲ (BESⅢ) beam pipe is in the center of the BESⅢ, which is the detector of the upgrade project of Beijing electron and positron collider (BEPC Ⅱ). Electrons and positrons collide in the...The Beijing spectrometer Ⅲ (BESⅢ) beam pipe is in the center of the BESⅢ, which is the detector of the upgrade project of Beijing electron and positron collider (BEPC Ⅱ). Electrons and positrons collide in the BESⅢ beam pipe. According to the demands of the BEPC Ⅱ, a key program of Chinese Academy of Sciences, the BESⅢ beam pipe is designed based on the finite elements analysis. The BESIII beam pipe is installed in the inner cylinder of the BESⅢ drift chamber. As a vacuum tube, the BESIII beam pipe is designed as 1 000 mm in length, 63 mm in inner diameter and 114 mm in outer diameter, respectively. The BESIII beam pipe consists of a central beryllium pipe cooled by EDM-1, the oil No.1 for electric discharge machining, and two extended copper pipes cooled by deionized water (DW). The three parts are jointed by vacuum welding. Factors taken into account in the design are as follows. ① The wall thickness of the central beryllium pipe should be designed as small as possible to reduce the multi-scattering and improve the particle momentum resolution. And the wall thickness of the extended copper pipe should be designed as large as possible to protect the detectors from the backgrounds. ②The BESⅢ beam pipe must be sufficiently cooled to avoid the damage and prevents its influence to the BESⅢ drift chamber (DC) operation. The inner surface temperature of the DC inner cylinder must be maintained at 293±2 K. ③ The magnetic permeability of the materials used in the BESⅢ beam pipe must be less than 1.05 H/m to avoid large magnetic field distortions. ④ The static pressure of the vacuum chamber of the BESⅢ beam pipe must be less than 800 μPa. The simulating results show that the designed structure of the BESⅢ beam pipe satisfies the requirements mentioned above. The structure design scheme is evaluated and adonted hv the headouarters of BEPCⅡ.展开更多
Purpose In order to improve the charged particle identi-fication capability,end-cap time-of-flight(ETOF)detector of the Beijing Spectrometer(BESIII)has been upgraded with multi-gap resistive plate chamber(MRPC)technol...Purpose In order to improve the charged particle identi-fication capability,end-cap time-of-flight(ETOF)detector of the Beijing Spectrometer(BESIII)has been upgraded with multi-gap resistive plate chamber(MRPC)technology,aiming at an overall time resolution of 80 ps for minimum-ionization particles to extend the K/πseparation(2σ)momentum range to 1.4 GeV/c.Methods The previous version of ETOF in BESIII consisted of plastic scintillators.The multi-hit events distort both shape and amplitude of the output signals.MRPC technique was chosen for the BESIII ETOF upgrade as it provides high time resolution and high detection efficiency,is of relatively low cost and is insensitive to neutral particles.Most importantly,the fine segmentation of the MRPC readout stripes can suppress multi-hit events effectively.Results The final design of MRPC module for ETOF is characterized by double-stack(2×6)structure,dual-end readout mode and precision electronics.To batch-produce and test these MRPC modules,a series of tools and production procedures as well as related performance simulation and test methods were developed.Results showed that each MRPC module’s intrinsic time resolution(including the electronics contribution)is around 50 ps and the efficiency is better than 97%.The overall performance of the upgraded ETOF is better than the designed index.The new ETOF has been successfully installed at BESIII and run in 2016.展开更多
In this paper we discuss the reasons for our work towards establishing a new collaboration between Jefferson Lab (JLab) and the Institute of High Energy Physics (IHEP) in Beijing. We seek to combine experimentalis...In this paper we discuss the reasons for our work towards establishing a new collaboration between Jefferson Lab (JLab) and the Institute of High Energy Physics (IHEP) in Beijing. We seek to combine experimentalists and theorists into a dedicated group focused on better understanding the current and future data from JLab and from the Beijing Electron Positron Collider (BEPC). Recent JLab results on the extraction of single- and double-polarization observables in both the lπ- and 2π-channel show their high sensitivity to small production amplitudes and therefore their importance for the extraction of resonance parameters. The Beijing Electron Spectrometer (BES) at the BEPC has collected high statistics data on J/ψ production. Its decay into baryon-antibaryon channels offers a unique and complementary way of probing nucleon resonances. The CEBAF Large Acceptance Spectrometer, CLAS, has access to N* form factors at high Q2 which is advantageous for the study of dynamical properties of nucleon resonances, while the low-background BES results will be able to provide guidance for the search for less-dominant excited states at JLab. Moreover, with the recently approved experimental proposal Nucleon Resonance Studies with CLAS12 and the high-quality data streaming from BES-Ⅲand CLAS, the time has come for forging a new Trans-Pacific collaboration of theorists and experimentalists on NSTAR physics.展开更多
基金Key Programs of Chinese Academy of Sciences(No.KJ95T-03)
文摘The Beijing spectrometer Ⅲ (BESⅢ) beam pipe is in the center of the BESⅢ, which is the detector of the upgrade project of Beijing electron and positron collider (BEPC Ⅱ). Electrons and positrons collide in the BESⅢ beam pipe. According to the demands of the BEPC Ⅱ, a key program of Chinese Academy of Sciences, the BESⅢ beam pipe is designed based on the finite elements analysis. The BESIII beam pipe is installed in the inner cylinder of the BESⅢ drift chamber. As a vacuum tube, the BESIII beam pipe is designed as 1 000 mm in length, 63 mm in inner diameter and 114 mm in outer diameter, respectively. The BESIII beam pipe consists of a central beryllium pipe cooled by EDM-1, the oil No.1 for electric discharge machining, and two extended copper pipes cooled by deionized water (DW). The three parts are jointed by vacuum welding. Factors taken into account in the design are as follows. ① The wall thickness of the central beryllium pipe should be designed as small as possible to reduce the multi-scattering and improve the particle momentum resolution. And the wall thickness of the extended copper pipe should be designed as large as possible to protect the detectors from the backgrounds. ②The BESⅢ beam pipe must be sufficiently cooled to avoid the damage and prevents its influence to the BESⅢ drift chamber (DC) operation. The inner surface temperature of the DC inner cylinder must be maintained at 293±2 K. ③ The magnetic permeability of the materials used in the BESⅢ beam pipe must be less than 1.05 H/m to avoid large magnetic field distortions. ④ The static pressure of the vacuum chamber of the BESⅢ beam pipe must be less than 800 μPa. The simulating results show that the designed structure of the BESⅢ beam pipe satisfies the requirements mentioned above. The structure design scheme is evaluated and adonted hv the headouarters of BEPCⅡ.
基金supported by the National Natural Science Foundation of China(Nos.10979003,11675172,U1232206)Chinese Academy of Sciences(No.1G201331231172010).
文摘Purpose In order to improve the charged particle identi-fication capability,end-cap time-of-flight(ETOF)detector of the Beijing Spectrometer(BESIII)has been upgraded with multi-gap resistive plate chamber(MRPC)technology,aiming at an overall time resolution of 80 ps for minimum-ionization particles to extend the K/πseparation(2σ)momentum range to 1.4 GeV/c.Methods The previous version of ETOF in BESIII consisted of plastic scintillators.The multi-hit events distort both shape and amplitude of the output signals.MRPC technique was chosen for the BESIII ETOF upgrade as it provides high time resolution and high detection efficiency,is of relatively low cost and is insensitive to neutral particles.Most importantly,the fine segmentation of the MRPC readout stripes can suppress multi-hit events effectively.Results The final design of MRPC module for ETOF is characterized by double-stack(2×6)structure,dual-end readout mode and precision electronics.To batch-produce and test these MRPC modules,a series of tools and production procedures as well as related performance simulation and test methods were developed.Results showed that each MRPC module’s intrinsic time resolution(including the electronics contribution)is around 50 ps and the efficiency is better than 97%.The overall performance of the upgraded ETOF is better than the designed index.The new ETOF has been successfully installed at BESIII and run in 2016.
文摘In this paper we discuss the reasons for our work towards establishing a new collaboration between Jefferson Lab (JLab) and the Institute of High Energy Physics (IHEP) in Beijing. We seek to combine experimentalists and theorists into a dedicated group focused on better understanding the current and future data from JLab and from the Beijing Electron Positron Collider (BEPC). Recent JLab results on the extraction of single- and double-polarization observables in both the lπ- and 2π-channel show their high sensitivity to small production amplitudes and therefore their importance for the extraction of resonance parameters. The Beijing Electron Spectrometer (BES) at the BEPC has collected high statistics data on J/ψ production. Its decay into baryon-antibaryon channels offers a unique and complementary way of probing nucleon resonances. The CEBAF Large Acceptance Spectrometer, CLAS, has access to N* form factors at high Q2 which is advantageous for the study of dynamical properties of nucleon resonances, while the low-background BES results will be able to provide guidance for the search for less-dominant excited states at JLab. Moreover, with the recently approved experimental proposal Nucleon Resonance Studies with CLAS12 and the high-quality data streaming from BES-Ⅲand CLAS, the time has come for forging a new Trans-Pacific collaboration of theorists and experimentalists on NSTAR physics.