Coordinative development across various systems,particularly the economic,social,cultural,and human resources subsystems,is a key aspect of urban sustainability and has a direct impact on the quality of urbanization.T...Coordinative development across various systems,particularly the economic,social,cultural,and human resources subsystems,is a key aspect of urban sustainability and has a direct impact on the quality of urbanization.The Hangzhou Metropolitan Circle,comprising Hangzhou City,Huzhou City,Jiaxing City,and Shaoxing City,was the first metropolitan circle approved by the National Development and Reform Commission(NDRC)as a demonstration of economic transformation in China.To evaluate the coupling coordination degree of the four cities and analyze the coordinative development in three systems(including digital economy,regional innovation,and talent employment),we collected panel data during 2015–2022 from these four cities.The development level of the three systems was evaluated by the standard deviation method and comprehensive development index.The results are as follows:(1)the level of coupling coordinated development of the three systems in the Hangzhou Metropolitan Circle was relatively low;(2)the coupling coordination degree of the four cities in the Hangzhou Metropolitan Circle showed significant regional differences,among which Hangzhou City was in the leading position,and Huzhou,Jiaxing,and Shaoxing cities made steady but slow progress in the coupling development of the three systems;and(3)the development of digital economy and talent employment needs to be strengthened.This study contributes to the coordinative development of Hangzhou Metropolitan Circle by innovatively focusing on the coupling coordination relationship among digital economy,regional innovation,and talent employment,which also meets the industrial layout of Hangzhou Metropolitan Circle.In this way,the optimal allocation and sustainable development of digital economy,regional innovation,and talent employment in the Hangzhou Metropolitan Circle can be achieved.展开更多
Based on the data of gross domestic product(GDP),industrial added value and the proportion of industrial employees from 2000 to 2008,this paper studies the effect of industrial structure change on the regional economi...Based on the data of gross domestic product(GDP),industrial added value and the proportion of industrial employees from 2000 to 2008,this paper studies the effect of industrial structure change on the regional economic growth of Beijing-Tianjin-Hebei Metropolitan Region in China using the shift-share method.The results show that:1) In the 21st century,the industrial output of three industries,namely,primary,secondary,and tertiary,and the GDP grew rapidly in the study period.The tertiary industry grew the fastest;it had the largest contribution to the GDP and mean-while had become the most competitive industry in the metropolitan region.2) The development of cities within the region was not balanced.Firstly,compared with Tianjin,Beijing,as one of the two core cities,was more rational in the industrial structure.Secondly,the surrounding eight cities,which are Shijiazhuang,Qinhuangdao,Tangshan,Langfang,Baoding,Cangzhou,Zhangjiakou,and Chengde,were all uncompetitive than the two core cities.3) There was a great industrial gradient in the region(especially between the two core cities and the cities of Tangshan,Baoding,Zhangjia-kou,Chengde,Cangzhou,and Langfang).As a result,it is foreseeable that the industry transfer in the Bei-jing-Tianjin-Hebei Metropolitan Region will be one of the trends in regional development,and the industry transfer is inevitably to promote the regional integration.展开更多
The existing models of population distribution often focus on the region with a single city or even multiple centers, and lack the detailed explorations of the common and special type of urbanization areas with two ce...The existing models of population distribution often focus on the region with a single city or even multiple centers, and lack the detailed explorations of the common and special type of urbanization areas with two centers. Taking Beijing-Tianjin region of China, which is a distinct dual-nuclei metropolitan area in the world, as an example and choosing Landsat-5 TM image in 2005, population, etc. as the data, this paper devotes to comprehending and illustrating a model of Cassini growth of population between the two metropolitan cities through the research of spatial population distribution pattern, aided with RS and GIS techniques. Main technical processes include Kriging interpolation of the population data and character simulation of the Cassini ovals. According to the calculation of a/b, a key characteristic index of Cassini growth model, the spatial structures of population distribution were given. When a/b〈 1, it is a curve with two separated loops with a population density more than 3000 persons/km^2. When a/b=1, it is a lemniscate curve with a population density about 3000 persons/km^2. When 1〈a/b〈 √2, it is a dog-bone shaped concave curve with a population density between 500-3000 persons/km^2. When a/b= √2, it is an oblate curve with a population density about 500 persons/km^2. When a/b〉 √2, there is an oval-shaped convex curve with a population density less than 500 persons/km^2. The results show that owing to the combined action and influence of the regional dual-nuclei, the population distribution of Beijing-Tianjin region is in accord with Cassini model significantly. Therefore, there is Cassini growth of population between the two metropolitan cities in Beijing-Tianjin region. In addition, the process of Cassini growth has extraordinarily instructive significance for judging the development stages of the dual-nuclei metropolitan areas.展开更多
The coordinated development of Beijing, Tianjin and Hebei has been elevated as China's important strategy. And, the priority in considering how to bring the maximum effect of their coordinated development into pla...The coordinated development of Beijing, Tianjin and Hebei has been elevated as China's important strategy. And, the priority in considering how to bring the maximum effect of their coordinated development into play is to delineate the spheres of urban influence with regard to the cities in the Beijing-Tianjin-Hebei Metropolitan Region. By building an evaluation index system of urban comprehensive strength, this paper applies the principal component analysis method to determine centrality strength of the cities, and the breakpoint theory and weighted Voronoi diagram to identify the spheres of urban influence in all central cities of the region. Results show that 13 central cities within the region greatly differ in strength, which can be classified into four tiers and that the spheres of urban influence do not have a high goodness of fit with administrative jurisdiction scope. Cities like Beijing, Tianjin, Shijiazhuang and Handan have larger spheres of urban, spheres of urban influence in Tangshan and Qinhuangdao are basically consistent with their administrative jurisdiction scopes, and seven cities including Langfang and Baoding have smaller spheres of urban influence. So according to these cities' comprehensive strength and spheres of influence, the region can be divided into five plates: Beijing, Tianjin, Shijiazhuang, Tangshan and Handan. The major influence factors for inconsistency between spheres of urban influence and spheres of jurisdiction include difference in urban administrative ranking, small number of central cities with weak strength, discrepancy in the number of counties under jurisdiction, unreasonable spheres of jurisdiction and diversity in topographical conditions. In order to solve the imbalance in the spheres of urban influence and those of jurisdiction and better facilitate the coordinated development of the region, it is advised to adjust administrative areas so as to obtain more optimized urban spatial layout and more reasonable urban scale hierarchy system.展开更多
In metropolitan regions, the change in the strength of "flows" between a core city and surrounding cities re-flects the range of the core city's influence, while the gravity between core city and other c...In metropolitan regions, the change in the strength of "flows" between a core city and surrounding cities re-flects the range of the core city's influence, while the gravity between core city and other cities reflects the strength of potential relation between them. This article firstly attempts to delimit the boundary of metropolitan regions with the two dimensions measure combining "flows" and gravitation. The former is measured through the flow of people be-tween the core city and surrounding cities, and the latter is measured through both population and gross domestic products (GDP) of the core city and surrounding cities. The hierarchy of the cities within a metropolitan region is classified in order to emphasize the roles of the cities belonging to the metropolitan regions, different from the general way through population scale and administrative level, and is typical in China. This paper uses the Shanghai metropolitan region as a research case, determining boundary of this metropolitan region clearly and classifying hierarchy of the cities within the region. The final results are significantly different to previous work, even overthrowing the traditional system of urban hierarchy partly. It is helpful to highlight the function of cities in organizing the regional economy, the level structure of metropolitan regions, and each city's relative importance in a metropolitan region, which can be taken as scientific basis for planning integrated regions or urban systems.展开更多
The Zhujiang (Pearl) River Delta is one of the most developed Extended Metropolitan Regions (EMR) in China.With the rapid urbanization,the agglomeration of population and industries has emerged,which has led to dramat...The Zhujiang (Pearl) River Delta is one of the most developed Extended Metropolitan Regions (EMR) in China.With the rapid urbanization,the agglomeration of population and industries has emerged,which has led to dramatic changes of spatial structure and land use in this region.With data of high resolution TM remote sensing images and Google Earth maps,this paper identified and analyzed the spatial pattern of the Zhujiang River Delta EMR using Envy and ArcGIS tools.It was found that 1) the industrial land uses were expanding substantially,particularly on the bank sides of the Zhujiang River estuary;2) large-scale housing developments were concentrated in the fringe of metropolitan areas such as those of Guangzhou and Shenzhen;3) a regional transportation network with the spatial pattern of ″1 circle +2 pieces + 3 axes″ had significantly affected the location choice of manufacture enterprises.At the same time,both highly specialized land use and severely mixed land use patterns were identified.As a consequence of the latter,land use efficiency of the whole EMR areas was reduced.Moreover,ecologic and environmental problems were severe.Based on the above analysis,suggestions were given from the viewpoint of spatial safety,land use efficiency,and the reorganization of spatial structure in the Zhujiang River Delta EMR.展开更多
Hail is one of the important weather disasters that affects the Beijing-Tianjin(BT) region.To better understand and to improve the forecasting of hail events over the BT region,the precursor weather conditions for hai...Hail is one of the important weather disasters that affects the Beijing-Tianjin(BT) region.To better understand and to improve the forecasting of hail events over the BT region,the precursor weather conditions for hail based on 30 previous hail events were derived.It was found that the high-level trough and low-level cold front over the Mongolian region,the accumulated convective available potential energy,the decrease of the height of the 0℃-isotherm in the morning,and the persistence and intensification of these factors from morning to afternoon are valuable clues for forecasting the occurrence of hail events over the BT region.展开更多
The use of remote sensing techniques and subsequent analysis by means of geographical information system (GIS) offers an effective method for monitoring temporal and spatial changes of landscapes. This work studies th...The use of remote sensing techniques and subsequent analysis by means of geographical information system (GIS) offers an effective method for monitoring temporal and spatial changes of landscapes. This work studies the urbanization processes and associated threats to natural ecosystems and resources in the metropolitan areas of Berlin and Erlangen-Fürth-Nürnber?Schwabach (EFNS). To compute the land use/cover (LULC) of the study areas, a supervised classification of “maximum likelihood” using Landsat data for the years of 1972, 1985, 1998, 2003, and 2015 is used. Results show that the built-up area is the dominant land use in both regions throughout the study period. This land use has increased at the expense of green and open areas in EFNS and at the expense of agricultural land in Berlin. Likewise, 5% of forest in EFNS is replaced with urban infrastructure. However, the amount of forest in Berlin increased by 3%. While EFNS experienced relatively big changes in its water bodies from 1972 to 1985, changes in water bodies in Berlin were rather slight during the last 40 years. The overall accuracy of our remotely sensed LULC maps was between 88% and 94% in Berlin and between 85.87% and 87.4% for EFNS. The combination of remote sensing and GIS appears to be an indispensable tool for monitoring changes in LULC in urban areas and help improving LU planning to avoid environmental and ecological problems.展开更多
Aiming for the restoration of degraded ecosystems, many ecological engineering projects have been implemented around the world. This study investigates the ecological engineering project effectiveness on vegetation re...Aiming for the restoration of degraded ecosystems, many ecological engineering projects have been implemented around the world. This study investigates the ecological engineering project effectiveness on vegetation restoration in the Beijing-Tianjin Sand Source Region(BTSSR) from 2000 to 2010 based on the rain use efficiency(RUE) trend in relation to the land cover. More than half of the BTSSR experienced a vegetation productivity increase from 2000 to 2010, with the increasing intensity being sensitive to the indicators chosen. A clear tendency towards smaller increasing areas was shown when using the net primary productivity(NPP, 51.30%) instead of the accumulated normalized difference vegetation index(59.30%). The short-term variation in the precipitation and intra-seasonal precipitation distribution had a great impact on the remote sensing-based vegetation productivity. However, the residual trends method(RESTREND) effectively eliminated this correlation, while incorporating the variance and skewness of the precipitation distribution increased the models′ ability to explain the vegetation productivity variation. The RUE combined with land cover dynamics was valid for the effectiveness assessment of the ecological engineering projects on vegetation restoration. Particularly, the result based on growing season accumulated normalized difference vegetation index(ΣNDVI) residuals was the most effective, showing that 47.39% of the BTSSR experienced vegetation restoration from 2000 to 2010. The effectiveness of the ecological engineering projects differed for each subarea and was proportional to the strength of ecological engineering. The water erosion region dominated by woodland showed the best restoration, followed by the wind-water erosion crisscross regions, while the wind erosion regions dominated by grassland showed the worst effect. Seriously degraded regions still cover more area in the BTSSR than restored regions. Therefore, more future effort should be put in restoring degraded land.展开更多
Dominated by an arid and semiarid continental climate,the Beijing-Tianjin Sandstorm Source Region(BTSSR)is a typical ecologically fragile region with frequently occurring droughts.To provide information for regional v...Dominated by an arid and semiarid continental climate,the Beijing-Tianjin Sandstorm Source Region(BTSSR)is a typical ecologically fragile region with frequently occurring droughts.To provide information for regional vegetation protection and drought prevention,we assessed the relations between vegetation cover change(measured by the Normalized Difference Vegetation Index,NDVI)and the Standardized Precipitation Evapotranspiration Index(SPEI)at different time-scales,in different growth stages,in different subregions and for different vegetation types based on the Pearson's correlation coefficient in the BTSSR from 2000 to 2017.Results showed that 88.19%of the vegetated areas experienced increased NDVI in the growing season;48.3%of the vegetated areas experi-enced significantly increased NDVI(P<0.05)and were mainly in the south of the BTSSR.During the growing season,a wetter climate contributed to the increased vegetation cover from 2000 to 2017,and NDVI anomalies were closely related to SPEI.The maximum correlation coefficient in the growing season(Rmax)was significantly positive(P<0.05)in 97.84%of the total vegetated areas.In the vegetated areas with significantly positive Rmax,pixels with short time-scales(1-3 mon)accounted for the largest proportion(33.9%).The sensitivity of vegetation to the impact of drought rose first and then decreased in the growing season,with a peak in July.Compared with two subregions in the south,subregions in the north of the BTSSR were more sensitive to the impacts of drought variations,especially in the Xilingol Plateau and Wuzhumuqin Basin.All four major vegetation types were sensitive to the effects of drought variations,especially grasslands.The time-scales of the most impacting droughts varied with growth stages,regions,and vegetation types.These results can help us understand the relations between vegetation and droughts,which are important for ecological restoration and drought prevention.展开更多
基金supported by the Ningbo Polytechnic Industry-Education Integration Research Project(NZ23CJ05Z)the Ningbo Municipal Philosophy and Social Science Project(G2023-2-Z11)the Soft Science Project of Zhejiang Science and Technology Department,China(2024C35096).
文摘Coordinative development across various systems,particularly the economic,social,cultural,and human resources subsystems,is a key aspect of urban sustainability and has a direct impact on the quality of urbanization.The Hangzhou Metropolitan Circle,comprising Hangzhou City,Huzhou City,Jiaxing City,and Shaoxing City,was the first metropolitan circle approved by the National Development and Reform Commission(NDRC)as a demonstration of economic transformation in China.To evaluate the coupling coordination degree of the four cities and analyze the coordinative development in three systems(including digital economy,regional innovation,and talent employment),we collected panel data during 2015–2022 from these four cities.The development level of the three systems was evaluated by the standard deviation method and comprehensive development index.The results are as follows:(1)the level of coupling coordinated development of the three systems in the Hangzhou Metropolitan Circle was relatively low;(2)the coupling coordination degree of the four cities in the Hangzhou Metropolitan Circle showed significant regional differences,among which Hangzhou City was in the leading position,and Huzhou,Jiaxing,and Shaoxing cities made steady but slow progress in the coupling development of the three systems;and(3)the development of digital economy and talent employment needs to be strengthened.This study contributes to the coordinative development of Hangzhou Metropolitan Circle by innovatively focusing on the coupling coordination relationship among digital economy,regional innovation,and talent employment,which also meets the industrial layout of Hangzhou Metropolitan Circle.In this way,the optimal allocation and sustainable development of digital economy,regional innovation,and talent employment in the Hangzhou Metropolitan Circle can be achieved.
基金Under the auspices of Major Program of National Social Science Foundation of China (No. 10ZD&022)Youth Research Project of Ministry of Education (Humanities and Social Sciences) (No. 10YJC790020)Central University of Finance and Economics'121 Talent Project' Fundation for Youth Doctor Development (No. QBJGL201004)
文摘Based on the data of gross domestic product(GDP),industrial added value and the proportion of industrial employees from 2000 to 2008,this paper studies the effect of industrial structure change on the regional economic growth of Beijing-Tianjin-Hebei Metropolitan Region in China using the shift-share method.The results show that:1) In the 21st century,the industrial output of three industries,namely,primary,secondary,and tertiary,and the GDP grew rapidly in the study period.The tertiary industry grew the fastest;it had the largest contribution to the GDP and mean-while had become the most competitive industry in the metropolitan region.2) The development of cities within the region was not balanced.Firstly,compared with Tianjin,Beijing,as one of the two core cities,was more rational in the industrial structure.Secondly,the surrounding eight cities,which are Shijiazhuang,Qinhuangdao,Tangshan,Langfang,Baoding,Cangzhou,Zhangjiakou,and Chengde,were all uncompetitive than the two core cities.3) There was a great industrial gradient in the region(especially between the two core cities and the cities of Tangshan,Baoding,Zhangjia-kou,Chengde,Cangzhou,and Langfang).As a result,it is foreseeable that the industry transfer in the Bei-jing-Tianjin-Hebei Metropolitan Region will be one of the trends in regional development,and the industry transfer is inevitably to promote the regional integration.
基金Under the auspices of National High-Tech Research and Development Program of China(863 Program)(No. 2007AAl22235)National Natural Science Foundation ofChina(No.40471058)
文摘The existing models of population distribution often focus on the region with a single city or even multiple centers, and lack the detailed explorations of the common and special type of urbanization areas with two centers. Taking Beijing-Tianjin region of China, which is a distinct dual-nuclei metropolitan area in the world, as an example and choosing Landsat-5 TM image in 2005, population, etc. as the data, this paper devotes to comprehending and illustrating a model of Cassini growth of population between the two metropolitan cities through the research of spatial population distribution pattern, aided with RS and GIS techniques. Main technical processes include Kriging interpolation of the population data and character simulation of the Cassini ovals. According to the calculation of a/b, a key characteristic index of Cassini growth model, the spatial structures of population distribution were given. When a/b〈 1, it is a curve with two separated loops with a population density more than 3000 persons/km^2. When a/b=1, it is a lemniscate curve with a population density about 3000 persons/km^2. When 1〈a/b〈 √2, it is a dog-bone shaped concave curve with a population density between 500-3000 persons/km^2. When a/b= √2, it is an oblate curve with a population density about 500 persons/km^2. When a/b〉 √2, there is an oval-shaped convex curve with a population density less than 500 persons/km^2. The results show that owing to the combined action and influence of the regional dual-nuclei, the population distribution of Beijing-Tianjin region is in accord with Cassini model significantly. Therefore, there is Cassini growth of population between the two metropolitan cities in Beijing-Tianjin region. In addition, the process of Cassini growth has extraordinarily instructive significance for judging the development stages of the dual-nuclei metropolitan areas.
基金Under the auspices of National Natural Science Foundation of China(No.41471126)
文摘The coordinated development of Beijing, Tianjin and Hebei has been elevated as China's important strategy. And, the priority in considering how to bring the maximum effect of their coordinated development into play is to delineate the spheres of urban influence with regard to the cities in the Beijing-Tianjin-Hebei Metropolitan Region. By building an evaluation index system of urban comprehensive strength, this paper applies the principal component analysis method to determine centrality strength of the cities, and the breakpoint theory and weighted Voronoi diagram to identify the spheres of urban influence in all central cities of the region. Results show that 13 central cities within the region greatly differ in strength, which can be classified into four tiers and that the spheres of urban influence do not have a high goodness of fit with administrative jurisdiction scope. Cities like Beijing, Tianjin, Shijiazhuang and Handan have larger spheres of urban, spheres of urban influence in Tangshan and Qinhuangdao are basically consistent with their administrative jurisdiction scopes, and seven cities including Langfang and Baoding have smaller spheres of urban influence. So according to these cities' comprehensive strength and spheres of influence, the region can be divided into five plates: Beijing, Tianjin, Shijiazhuang, Tangshan and Handan. The major influence factors for inconsistency between spheres of urban influence and spheres of jurisdiction include difference in urban administrative ranking, small number of central cities with weak strength, discrepancy in the number of counties under jurisdiction, unreasonable spheres of jurisdiction and diversity in topographical conditions. In order to solve the imbalance in the spheres of urban influence and those of jurisdiction and better facilitate the coordinated development of the region, it is advised to adjust administrative areas so as to obtain more optimized urban spatial layout and more reasonable urban scale hierarchy system.
基金Under the auspices of Shanghai Foundation Item for Philosophy and Social Sciences (No 2005BCK004)Research Center on Metropolitan Regions of China (No RCMRC 07006)
文摘In metropolitan regions, the change in the strength of "flows" between a core city and surrounding cities re-flects the range of the core city's influence, while the gravity between core city and other cities reflects the strength of potential relation between them. This article firstly attempts to delimit the boundary of metropolitan regions with the two dimensions measure combining "flows" and gravitation. The former is measured through the flow of people be-tween the core city and surrounding cities, and the latter is measured through both population and gross domestic products (GDP) of the core city and surrounding cities. The hierarchy of the cities within a metropolitan region is classified in order to emphasize the roles of the cities belonging to the metropolitan regions, different from the general way through population scale and administrative level, and is typical in China. This paper uses the Shanghai metropolitan region as a research case, determining boundary of this metropolitan region clearly and classifying hierarchy of the cities within the region. The final results are significantly different to previous work, even overthrowing the traditional system of urban hierarchy partly. It is helpful to highlight the function of cities in organizing the regional economy, the level structure of metropolitan regions, and each city's relative importance in a metropolitan region, which can be taken as scientific basis for planning integrated regions or urban systems.
基金Under the auspices of National Natural Science Foundation of China (No.40901088,40671063)Knowledge Innovation Programs of Chinese Academy of Sciences (No.KZCX2-YW-321)China Postdoctoral Science Foundation (No.20080440513,200902134)
文摘The Zhujiang (Pearl) River Delta is one of the most developed Extended Metropolitan Regions (EMR) in China.With the rapid urbanization,the agglomeration of population and industries has emerged,which has led to dramatic changes of spatial structure and land use in this region.With data of high resolution TM remote sensing images and Google Earth maps,this paper identified and analyzed the spatial pattern of the Zhujiang River Delta EMR using Envy and ArcGIS tools.It was found that 1) the industrial land uses were expanding substantially,particularly on the bank sides of the Zhujiang River estuary;2) large-scale housing developments were concentrated in the fringe of metropolitan areas such as those of Guangzhou and Shenzhen;3) a regional transportation network with the spatial pattern of ″1 circle +2 pieces + 3 axes″ had significantly affected the location choice of manufacture enterprises.At the same time,both highly specialized land use and severely mixed land use patterns were identified.As a consequence of the latter,land use efficiency of the whole EMR areas was reduced.Moreover,ecologic and environmental problems were severe.Based on the above analysis,suggestions were given from the viewpoint of spatial safety,land use efficiency,and the reorganization of spatial structure in the Zhujiang River Delta EMR.
基金supported by the Scientific Research Foundation for Returned Scholars of the State Personnel Ministry of China,the Research Foundation of Institute of Urban Meteorology, CMA (Grant No. UMRF 200809)the R&D Special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY200906003)the National Basic Research Program of China (Grant No. 2009CB421406)
文摘Hail is one of the important weather disasters that affects the Beijing-Tianjin(BT) region.To better understand and to improve the forecasting of hail events over the BT region,the precursor weather conditions for hail based on 30 previous hail events were derived.It was found that the high-level trough and low-level cold front over the Mongolian region,the accumulated convective available potential energy,the decrease of the height of the 0℃-isotherm in the morning,and the persistence and intensification of these factors from morning to afternoon are valuable clues for forecasting the occurrence of hail events over the BT region.
文摘The use of remote sensing techniques and subsequent analysis by means of geographical information system (GIS) offers an effective method for monitoring temporal and spatial changes of landscapes. This work studies the urbanization processes and associated threats to natural ecosystems and resources in the metropolitan areas of Berlin and Erlangen-Fürth-Nürnber?Schwabach (EFNS). To compute the land use/cover (LULC) of the study areas, a supervised classification of “maximum likelihood” using Landsat data for the years of 1972, 1985, 1998, 2003, and 2015 is used. Results show that the built-up area is the dominant land use in both regions throughout the study period. This land use has increased at the expense of green and open areas in EFNS and at the expense of agricultural land in Berlin. Likewise, 5% of forest in EFNS is replaced with urban infrastructure. However, the amount of forest in Berlin increased by 3%. While EFNS experienced relatively big changes in its water bodies from 1972 to 1985, changes in water bodies in Berlin were rather slight during the last 40 years. The overall accuracy of our remotely sensed LULC maps was between 88% and 94% in Berlin and between 85.87% and 87.4% for EFNS. The combination of remote sensing and GIS appears to be an indispensable tool for monitoring changes in LULC in urban areas and help improving LU planning to avoid environmental and ecological problems.
基金Under the auspices of National Natural Science Foundation of China(No.41571421)National Science and Technology Major Project of China(No.21-Y30B05-9001-13/15)
文摘Aiming for the restoration of degraded ecosystems, many ecological engineering projects have been implemented around the world. This study investigates the ecological engineering project effectiveness on vegetation restoration in the Beijing-Tianjin Sand Source Region(BTSSR) from 2000 to 2010 based on the rain use efficiency(RUE) trend in relation to the land cover. More than half of the BTSSR experienced a vegetation productivity increase from 2000 to 2010, with the increasing intensity being sensitive to the indicators chosen. A clear tendency towards smaller increasing areas was shown when using the net primary productivity(NPP, 51.30%) instead of the accumulated normalized difference vegetation index(59.30%). The short-term variation in the precipitation and intra-seasonal precipitation distribution had a great impact on the remote sensing-based vegetation productivity. However, the residual trends method(RESTREND) effectively eliminated this correlation, while incorporating the variance and skewness of the precipitation distribution increased the models′ ability to explain the vegetation productivity variation. The RUE combined with land cover dynamics was valid for the effectiveness assessment of the ecological engineering projects on vegetation restoration. Particularly, the result based on growing season accumulated normalized difference vegetation index(ΣNDVI) residuals was the most effective, showing that 47.39% of the BTSSR experienced vegetation restoration from 2000 to 2010. The effectiveness of the ecological engineering projects differed for each subarea and was proportional to the strength of ecological engineering. The water erosion region dominated by woodland showed the best restoration, followed by the wind-water erosion crisscross regions, while the wind erosion regions dominated by grassland showed the worst effect. Seriously degraded regions still cover more area in the BTSSR than restored regions. Therefore, more future effort should be put in restoring degraded land.
基金Under the auspices of National Natural Science Foundation of China(No.41807177,41701017)the Pioneer‘Hundred Talents Program’of Chinese Academy of Sciences。
文摘Dominated by an arid and semiarid continental climate,the Beijing-Tianjin Sandstorm Source Region(BTSSR)is a typical ecologically fragile region with frequently occurring droughts.To provide information for regional vegetation protection and drought prevention,we assessed the relations between vegetation cover change(measured by the Normalized Difference Vegetation Index,NDVI)and the Standardized Precipitation Evapotranspiration Index(SPEI)at different time-scales,in different growth stages,in different subregions and for different vegetation types based on the Pearson's correlation coefficient in the BTSSR from 2000 to 2017.Results showed that 88.19%of the vegetated areas experienced increased NDVI in the growing season;48.3%of the vegetated areas experi-enced significantly increased NDVI(P<0.05)and were mainly in the south of the BTSSR.During the growing season,a wetter climate contributed to the increased vegetation cover from 2000 to 2017,and NDVI anomalies were closely related to SPEI.The maximum correlation coefficient in the growing season(Rmax)was significantly positive(P<0.05)in 97.84%of the total vegetated areas.In the vegetated areas with significantly positive Rmax,pixels with short time-scales(1-3 mon)accounted for the largest proportion(33.9%).The sensitivity of vegetation to the impact of drought rose first and then decreased in the growing season,with a peak in July.Compared with two subregions in the south,subregions in the north of the BTSSR were more sensitive to the impacts of drought variations,especially in the Xilingol Plateau and Wuzhumuqin Basin.All four major vegetation types were sensitive to the effects of drought variations,especially grasslands.The time-scales of the most impacting droughts varied with growth stages,regions,and vegetation types.These results can help us understand the relations between vegetation and droughts,which are important for ecological restoration and drought prevention.