The accurate estimation of fracture geometry parameters and the characterization of rock mass structure are two important topics in the geological disposal system of high-level radioactive waste(HLW).The Beishan area,...The accurate estimation of fracture geometry parameters and the characterization of rock mass structure are two important topics in the geological disposal system of high-level radioactive waste(HLW).The Beishan area,as the current preselected area for China’s HLW disposal,has three subareas considered to be the key survey area at the stage of site selection.In this paper,a comprehensive survey method conducted on the outcrop is developed to estimate fracture geometry parameters.Results show that fracture occurrence obeys a Fisher distribution,fracture trace length obeys a normal distribution,and the distribution of spacing obeys a negative exponential distribution.An evaluation index,Rock Mass Structure Rating(RMSR),is proposed to characterize rock mass structure for the three subareas.The results show that the Xinchang area is more suitable to act as China’s HLW disposal repository site.At the same time,the index can also be applied to characterize surface rock mass structure and rock mass integrity at the site selection phase of HLW disposal.展开更多
The Weining Beishan area of Ningxia Hui Autonomous Region is located at on the western edge of the Helanshan tectonic belt,which is a tectonic joint among Alxa Block,Ordos Block,and North Qilian orogenic belt.However,...The Weining Beishan area of Ningxia Hui Autonomous Region is located at on the western edge of the Helanshan tectonic belt,which is a tectonic joint among Alxa Block,Ordos Block,and North Qilian orogenic belt.However,the tectonic evolution of this area remains unclear due to the lack of magmatic information.This paper conducted researches on geochronology,geochemistry,and Sr-Nd-Hf isotopes of the diorite porphyrites exposed in the Weining Beishan area.The zircon U-Pb dating yields two ages of 145.0±1.1 and 146.2±1.5 Ma,and the whole-rock geochemical data indicate that the diorite porphyrites are metaluminous to weakly peraluminous and high-K calc-alkaline series.The characteristics of highly initial^(87)Sr/^(86)Sr ratios(0.70816 to 0.71047),negativeε_(Nd)(t)(−8.9 to−8.4),and negativeε_(Hf)(t)(−13.8 to−21.2)indicate that the diorite porphyrites originated from partial melting of the middle-lower ancient crust related to the North China Craton.Combined with the regional geology,we suggested that partial melting was triggered by a tectonic activity of deep faults cutting through the crust under the regional stress transformation from compressing to extension during the Late Jurassic–Early Cretaceous,which is probably related to the westward subduction of the Paleo-Pacific Plate.展开更多
The research and development of high-level radioactive waste(HLW)repository is a long-term systematic engineering project.Normally,it involves such stages as foundation study,site selection and assessment,underground ...The research and development of high-level radioactive waste(HLW)repository is a long-term systematic engineering project.Normally,it involves such stages as foundation study,site selection and assessment,underground research laboratory testing, and the design,construction,operation,and close of the repository.The key issue in repository design展开更多
基金supported by the National Key Research and Development Program of China,under grant No.2018YFC1504903the Chongqing Natural Science Foundation,under grant No.cstc2020jcyj-msxm X0743 and cstc 2020jcyj-bsh0142+3 种基金the Open Research Fund of the State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,under grant No.Z019018China postdoctoral science foundation Grant No.2019M662918 and 2020M673152Regional Joint Fund for Basic and Applied Basic Research Fund of Guangdong Province,No.2019A1515110836the National Natural Science Foundation of China,under grant No.41688103。
文摘The accurate estimation of fracture geometry parameters and the characterization of rock mass structure are two important topics in the geological disposal system of high-level radioactive waste(HLW).The Beishan area,as the current preselected area for China’s HLW disposal,has three subareas considered to be the key survey area at the stage of site selection.In this paper,a comprehensive survey method conducted on the outcrop is developed to estimate fracture geometry parameters.Results show that fracture occurrence obeys a Fisher distribution,fracture trace length obeys a normal distribution,and the distribution of spacing obeys a negative exponential distribution.An evaluation index,Rock Mass Structure Rating(RMSR),is proposed to characterize rock mass structure for the three subareas.The results show that the Xinchang area is more suitable to act as China’s HLW disposal repository site.At the same time,the index can also be applied to characterize surface rock mass structure and rock mass integrity at the site selection phase of HLW disposal.
文摘The Weining Beishan area of Ningxia Hui Autonomous Region is located at on the western edge of the Helanshan tectonic belt,which is a tectonic joint among Alxa Block,Ordos Block,and North Qilian orogenic belt.However,the tectonic evolution of this area remains unclear due to the lack of magmatic information.This paper conducted researches on geochronology,geochemistry,and Sr-Nd-Hf isotopes of the diorite porphyrites exposed in the Weining Beishan area.The zircon U-Pb dating yields two ages of 145.0±1.1 and 146.2±1.5 Ma,and the whole-rock geochemical data indicate that the diorite porphyrites are metaluminous to weakly peraluminous and high-K calc-alkaline series.The characteristics of highly initial^(87)Sr/^(86)Sr ratios(0.70816 to 0.71047),negativeε_(Nd)(t)(−8.9 to−8.4),and negativeε_(Hf)(t)(−13.8 to−21.2)indicate that the diorite porphyrites originated from partial melting of the middle-lower ancient crust related to the North China Craton.Combined with the regional geology,we suggested that partial melting was triggered by a tectonic activity of deep faults cutting through the crust under the regional stress transformation from compressing to extension during the Late Jurassic–Early Cretaceous,which is probably related to the westward subduction of the Paleo-Pacific Plate.
文摘The research and development of high-level radioactive waste(HLW)repository is a long-term systematic engineering project.Normally,it involves such stages as foundation study,site selection and assessment,underground research laboratory testing, and the design,construction,operation,and close of the repository.The key issue in repository design