The Beiya gold polymetallic ore district covers an area of 22.06 km2 and is located 47.5 km away in the direction 172° from Heqing county seat of northwestern Yunnan. Its geographical coordinates are 100° 11...The Beiya gold polymetallic ore district covers an area of 22.06 km2 and is located 47.5 km away in the direction 172° from Heqing county seat of northwestern Yunnan. Its geographical coordinates are 100° 11 ′15″-100° 13′00″ E and 60°07′30″26°10′30″ N. Since its discovery in 1999 until November 31st 2013, it has had accumulative proven (111b+122b+331 +332+333) gold metal amounts of 258.475 t at an average grade of 2.61 g/t. This deposit contains 88.98 million tons of paragenetic and associated iron ores, with TFe grade varying from 9% to 36%; metal amounts are: gold 27 t; copper 0.6188 million tons; silver 5439 t; lead 1.35 million ton; zinc 0.31 million ton; and sulfur content is 10.09 million ton. Beiya is one of the top ten largest gold deposits discovered in recent years in China.展开更多
Based on comprehensive petrological, geochronological, and geochemical studies, this study analyzed the relationships between the Beiya gold-polymetallic skarn deposit and quartz syenite porphyries, and discussed the ...Based on comprehensive petrological, geochronological, and geochemical studies, this study analyzed the relationships between the Beiya gold-polymetallic skarn deposit and quartz syenite porphyries, and discussed the source(s) and evolution of magmas. Our results suggest that syenite porphyries(i.e. the Wandongshan, the Dashadi, and the Hongnitang porphyries), which formed between the Eocene and the early Oligocene epochs, are the sources for the gold-polymetallic ores at the Beiya deposit. Carbonate rocks(T2 b) of the Triassic Beiya Formation in the ore district provide favorable host space for deposit formation. Fold and fault structures collectively play an important role in ore formation. The contact zone between the porphyries and carbonates, the structurally fractured zone of carbonate and clastic rocks, and the zone with well-developed fractures are the ideal locations for ore bodies. Four types of mineralization have been recognized: 1) porphyry-style stockwork gold–iron(copper) ore, 2) skarn-style gold-iron(copper and lead) ore in the near contact zone, 3) strata-bound, lense-type lead–silver–gold ore in the outer contact zone, and 4) distal vein-type gold–lead–silver ore. Supergene processes led to the formation of oxide ore, such as the weathered and accumulated gold–iron ore, the strata-bound fracture oxide ore, and the structure-controlled vein-type ore. Most of these ore deposits are distributed along the axis of the depressed basin, with the hypogene ore controlling the shape and characteristics of the oxide ore. This study provides critical geology understanding for mineral prospecting scenarios.展开更多
The interpretation of regional gravity and magnetic data, especially the extracted information about concealed targets and structures, provide important evidence for geological structure research, oil-gas resource ass...The interpretation of regional gravity and magnetic data, especially the extracted information about concealed targets and structures, provide important evidence for geological structure research, oil-gas resource assessment, mineral potential forecast and prospective area delineation. Several interpretation methods have been proposed to determine structural boundary, including vertical derivative, horizontal first-order derivative, total horizontal derivative, total gradient modulus, tilt derivative, and theta graph, and each have their advantages and disadvantages. This study used the tilt derivate method to obtain bouguer gravity anomalies in the Beya area, as shown in Fig. 1a.展开更多
Intermediate acid-complex rock masses with low-density characteristics are the most important prospecting sign in the Beiya area, of western Yunnan province, and provide a physical basis for good gravity exploration. ...Intermediate acid-complex rock masses with low-density characteristics are the most important prospecting sign in the Beiya area, of western Yunnan province, and provide a physical basis for good gravity exploration. It is usually difficult to obtaining solutions in connection with actual geological situations due to the ambiguity of the conventional gravity-processing results and lack of deep constraints. Thus, the three-dimensional (3D) inversion technology is considered as the main channel for reducing the number of solutions and improving the vertical resolution at the current stage. The current study starts from a model test and performs nonlinear 3D density-difference inversion called “model likelihood exploration”, which performs 3D inversion imaging and inversion of the known model while considering the topographic effects. The inversion results are highly consistent with those of the known models. Simultaneously, we consider the Beiya gold mine in Yunnan as an example. The nonlinear 3D densitydifference inversion technology, which is restricted by geological information, is explored to obtain the 3D density body structure below 5 km in the mine area, and the 3D structure of the deep and concealed rock masses are obtained using the density constraints of the intermediate-acid-complex rock masses. The results are well consistent with the surface geological masses and drilling-controlled deep geological masses. The model test and examples both show that the 3D density-difference nonlinear inversion technology can reduce inversion ambiguity, improve resolution, optimize the inversion results, and realize “transparency” in deeply concealed rock masses in ore-concentrated areas,which is useful in guiding the deep ore prospecting.展开更多
文摘The Beiya gold polymetallic ore district covers an area of 22.06 km2 and is located 47.5 km away in the direction 172° from Heqing county seat of northwestern Yunnan. Its geographical coordinates are 100° 11 ′15″-100° 13′00″ E and 60°07′30″26°10′30″ N. Since its discovery in 1999 until November 31st 2013, it has had accumulative proven (111b+122b+331 +332+333) gold metal amounts of 258.475 t at an average grade of 2.61 g/t. This deposit contains 88.98 million tons of paragenetic and associated iron ores, with TFe grade varying from 9% to 36%; metal amounts are: gold 27 t; copper 0.6188 million tons; silver 5439 t; lead 1.35 million ton; zinc 0.31 million ton; and sulfur content is 10.09 million ton. Beiya is one of the top ten largest gold deposits discovered in recent years in China.
基金jointly financially supported by “Yunling Scholars” Research Project from Yunnan Province,China Geological Survey Project(No.DD20160124 and 12120114013501)the National Natural Science Foundation of China(grant No.41602103)the “Study on metallogenic regularities and metallogenic series of gold-polymetallic deposits,Northwestern Yunnan Province” research project(E1107)from Yunnan Gold&Mining Group Co.,Ltd
文摘Based on comprehensive petrological, geochronological, and geochemical studies, this study analyzed the relationships between the Beiya gold-polymetallic skarn deposit and quartz syenite porphyries, and discussed the source(s) and evolution of magmas. Our results suggest that syenite porphyries(i.e. the Wandongshan, the Dashadi, and the Hongnitang porphyries), which formed between the Eocene and the early Oligocene epochs, are the sources for the gold-polymetallic ores at the Beiya deposit. Carbonate rocks(T2 b) of the Triassic Beiya Formation in the ore district provide favorable host space for deposit formation. Fold and fault structures collectively play an important role in ore formation. The contact zone between the porphyries and carbonates, the structurally fractured zone of carbonate and clastic rocks, and the zone with well-developed fractures are the ideal locations for ore bodies. Four types of mineralization have been recognized: 1) porphyry-style stockwork gold–iron(copper) ore, 2) skarn-style gold-iron(copper and lead) ore in the near contact zone, 3) strata-bound, lense-type lead–silver–gold ore in the outer contact zone, and 4) distal vein-type gold–lead–silver ore. Supergene processes led to the formation of oxide ore, such as the weathered and accumulated gold–iron ore, the strata-bound fracture oxide ore, and the structure-controlled vein-type ore. Most of these ore deposits are distributed along the axis of the depressed basin, with the hypogene ore controlling the shape and characteristics of the oxide ore. This study provides critical geology understanding for mineral prospecting scenarios.
文摘The interpretation of regional gravity and magnetic data, especially the extracted information about concealed targets and structures, provide important evidence for geological structure research, oil-gas resource assessment, mineral potential forecast and prospective area delineation. Several interpretation methods have been proposed to determine structural boundary, including vertical derivative, horizontal first-order derivative, total horizontal derivative, total gradient modulus, tilt derivative, and theta graph, and each have their advantages and disadvantages. This study used the tilt derivate method to obtain bouguer gravity anomalies in the Beya area, as shown in Fig. 1a.
基金The authors would like to thank the China Geological Survey (DD20190033)National Natural Science Foundation (41804144) for the financial support,Yunnan Gold and Mineral Group Co.,Ltd. for providing the original geological information,and the reviewers for providing valuable comments.
文摘Intermediate acid-complex rock masses with low-density characteristics are the most important prospecting sign in the Beiya area, of western Yunnan province, and provide a physical basis for good gravity exploration. It is usually difficult to obtaining solutions in connection with actual geological situations due to the ambiguity of the conventional gravity-processing results and lack of deep constraints. Thus, the three-dimensional (3D) inversion technology is considered as the main channel for reducing the number of solutions and improving the vertical resolution at the current stage. The current study starts from a model test and performs nonlinear 3D density-difference inversion called “model likelihood exploration”, which performs 3D inversion imaging and inversion of the known model while considering the topographic effects. The inversion results are highly consistent with those of the known models. Simultaneously, we consider the Beiya gold mine in Yunnan as an example. The nonlinear 3D densitydifference inversion technology, which is restricted by geological information, is explored to obtain the 3D density body structure below 5 km in the mine area, and the 3D structure of the deep and concealed rock masses are obtained using the density constraints of the intermediate-acid-complex rock masses. The results are well consistent with the surface geological masses and drilling-controlled deep geological masses. The model test and examples both show that the 3D density-difference nonlinear inversion technology can reduce inversion ambiguity, improve resolution, optimize the inversion results, and realize “transparency” in deeply concealed rock masses in ore-concentrated areas,which is useful in guiding the deep ore prospecting.