This study aims to have a single coefficient resulting from the integration of all the reservoir parameters through which a decision can be taken to determine the best quality places in the reservoir. The conventional...This study aims to have a single coefficient resulting from the integration of all the reservoir parameters through which a decision can be taken to determine the best quality places in the reservoir. The conventional well logging data in nine wells were used to determine the reservoir parameters in the study area. Seven different parameters were calculated, five of them were directly proportional to the quality of the reservoir, while the remaining two parameters which represent shale volume and water saturation were inversely proportional to the reservoir quality. The index of each parameter was calculated. A new value was created from the integration of the seven different parameter indexes called the weighted index for the reservoir quality. The reservoir quality values were sliced in the three dimensions depending on the effect of all reservoir parameters and not on any single parameter. It is clear from the results of this study that horizontal and vertical slicing, as well as cut-off values, illustrates that the middle and upper parts are the best places for the reservoir to explore hydrocarbons, where the values of the weighted index of the reservoir quality range from 0.65 to 0.9. Meanwhile, the quality of the reservoir decreases in its lower parts.展开更多
文摘This study aims to have a single coefficient resulting from the integration of all the reservoir parameters through which a decision can be taken to determine the best quality places in the reservoir. The conventional well logging data in nine wells were used to determine the reservoir parameters in the study area. Seven different parameters were calculated, five of them were directly proportional to the quality of the reservoir, while the remaining two parameters which represent shale volume and water saturation were inversely proportional to the reservoir quality. The index of each parameter was calculated. A new value was created from the integration of the seven different parameter indexes called the weighted index for the reservoir quality. The reservoir quality values were sliced in the three dimensions depending on the effect of all reservoir parameters and not on any single parameter. It is clear from the results of this study that horizontal and vertical slicing, as well as cut-off values, illustrates that the middle and upper parts are the best places for the reservoir to explore hydrocarbons, where the values of the weighted index of the reservoir quality range from 0.65 to 0.9. Meanwhile, the quality of the reservoir decreases in its lower parts.