期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
A New Speed Limit Recognition Methodology Based on Ensemble Learning:Hardware Validation
1
作者 Mohamed Karray Nesrine Triki Mohamed Ksantini 《Computers, Materials & Continua》 SCIE EI 2024年第7期119-138,共20页
Advanced DriverAssistance Systems(ADAS)technologies can assist drivers or be part of automatic driving systems to support the driving process and improve the level of safety and comfort on the road.Traffic Sign Recogn... Advanced DriverAssistance Systems(ADAS)technologies can assist drivers or be part of automatic driving systems to support the driving process and improve the level of safety and comfort on the road.Traffic Sign Recognition System(TSRS)is one of themost important components ofADAS.Among the challengeswith TSRS is being able to recognize road signs with the highest accuracy and the shortest processing time.Accordingly,this paper introduces a new real time methodology recognizing Speed Limit Signs based on a trio of developed modules.Firstly,the Speed Limit Detection(SLD)module uses the Haar Cascade technique to generate a new SL detector in order to localize SL signs within captured frames.Secondly,the Speed Limit Classification(SLC)module,featuring machine learning classifiers alongside a newly developed model called DeepSL,harnesses the power of a CNN architecture to extract intricate features from speed limit sign images,ensuring efficient and precise recognition.In addition,a new Speed Limit Classifiers Fusion(SLCF)module has been developed by combining trained ML classifiers and the DeepSL model by using the Dempster-Shafer theory of belief functions and ensemble learning’s voting technique.Through rigorous software and hardware validation processes,the proposedmethodology has achieved highly significant F1 scores of 99.98%and 99.96%for DS theory and the votingmethod,respectively.Furthermore,a prototype encompassing all components demonstrates outstanding reliability and efficacy,with processing times of 150 ms for the Raspberry Pi board and 81.5 ms for the Nano Jetson board,marking a significant advancement in TSRS technology. 展开更多
关键词 Driving automation advanced driver assistance systems(ADAS) traffic sign recognition(TSR) artificial intelligence ensemble learning belief functions voting method
下载PDF
Novel moderate transformation of fuzzy membership function into basic belief assignment
2
作者 Xiaojing FAN Deqiang HAN +1 位作者 Jean DEZERT Yi YANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第1期369-385,共17页
In information fusion,the uncertain information from different sources might be modeled with different theoretical frameworks.When one needs to fuse the uncertain information represented by different uncertainty theor... In information fusion,the uncertain information from different sources might be modeled with different theoretical frameworks.When one needs to fuse the uncertain information represented by different uncertainty theories,constructing the transformation between different frameworks is crucial.Various transformations of a Fuzzy Membership Function(FMF)into a Basic Belief Assignment(BBA)have been proposed,where the transformations based on uncertainty maximization and minimization can determine the BBA without preselecting the focal elements.However,these two transformations that based on uncertainty optimization emphasize the extreme cases of uncertainty.To avoid extreme attitudinal bias,a trade-off or moderate BBA with the uncertainty degree between the minimal and maximal ones is more preferred.In this paper,two moderate transformations of an FMF into a trade-off BBA are proposed.One is the weighted average based transformation and the other is the optimization-based transformation with weighting mechanism,where the weighting factor can be user-specified or determined with some prior information.The rationality and effectiveness of our transformations are verified through numerical examples and classification examples. 展开更多
关键词 Basic belief assignment belief functions Fuzzy membership function Information fusion Moderate transformation
原文传递
Evidential method to identify influential nodes in complex networks 被引量:7
3
作者 Hongming Mo Cai Gao Yong Deng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第2期381-387,共7页
Identifying influential nodes in complex networks is still an open issue. In this paper, a new comprehensive centrality mea- sure is proposed based on the Dempster-Shafer evidence theory. The existing measures of degr... Identifying influential nodes in complex networks is still an open issue. In this paper, a new comprehensive centrality mea- sure is proposed based on the Dempster-Shafer evidence theory. The existing measures of degree centrality, betweenness centra- lity and closeness centrality are taken into consideration in the proposed method. Numerical examples are used to illustrate the effectiveness of the proposed method. 展开更多
关键词 Dempster-Shafer evidence theory (D-S theory) belief function complex networks influential nodes evidential centrality comprehensive measure
下载PDF
A generalized evidence distance 被引量:1
4
作者 Hongming Mo Xi Lu Yong Deng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期470-476,共7页
How to efficiently measure the distance between two basic probability assignments(BPAs) is an open issue. In this paper, a new method to measure the distance between two BPAs is proposed, based on two existing measu... How to efficiently measure the distance between two basic probability assignments(BPAs) is an open issue. In this paper, a new method to measure the distance between two BPAs is proposed, based on two existing measures of evidence distance. The new proposed method is comprehensive and generalized. Numerical examples are used to illustrate the effectiveness of the proposed method. 展开更多
关键词 Dempster-Shafer evidence(D-S) theory basic probability assignment(BPA) belief function evidence distance similarity function
下载PDF
Numerical Characterizations of Covering Rough Sets Based on Evidence Theory
5
作者 CHEN Degang ZHANG Xiao 《浙江海洋学院学报(自然科学版)》 CAS 2010年第5期416-419,共4页
Covering rough sets are improvements of traditional rough sets by considering cover of universe instead of partition.In this paper,we develop several measures based on evidence theory to characterize covering rough se... Covering rough sets are improvements of traditional rough sets by considering cover of universe instead of partition.In this paper,we develop several measures based on evidence theory to characterize covering rough sets.First,we present belief and plausibility functions in covering information systems and study their properties.With these measures we characterize lower and upper approximation operators and attribute reductions in covering information systems and decision systems respectively.With these discussions we propose a basic framework of numerical characterizations of covering rough sets. 展开更多
关键词 Covering rough sets Attribute reduction belief and plausibility functions Evidence theory
下载PDF
Basic belief assignment approximations using degree of non-redundancy for focal element 被引量:3
6
作者 Yi YANG Deqiang HAN Jean DEZERT 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第11期2503-2515,共13页
Dempster-Shafer evidence theory, also called the theory of belief function, is widely used for uncertainty modeling and reasoning. However, when the size and number of focal elements are large, the evidence combinatio... Dempster-Shafer evidence theory, also called the theory of belief function, is widely used for uncertainty modeling and reasoning. However, when the size and number of focal elements are large, the evidence combination will bring a high computational complexity. To address this issue,various methods have been proposed including the implementation of more efficient combination rules and the simplifications or approximations of Basic Belief Assignments(BBAs). In this paper,a novel principle for approximating a BBA into a simpler one is proposed, which is based on the degree of non-redundancy for focal elements. More non-redundant focal elements are kept in the approximation while more redundant focal elements in the original BBA are removed first. Three types of degree of non-redundancy are defined based on three different definitions of focal element distance, respectively. Two different implementations of this principle for BBA approximations are proposed including a batch and an iterative type. Examples, experiments, comparisons and related analyses are provided to validate proposed approximation approaches. 展开更多
关键词 BBA approximation belief functions Evidence theory Focal element Non-redundancy
原文传递
De-combination of belief function based on optimization 被引量:2
7
作者 Xiaojing FAN Deqiang HAN +1 位作者 Yi YANG Jean DEZERT 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第5期179-193,共15页
In the theory of belief functions,the evidence combination is a kind of decision-level information fusion.Given two or more Basic Belief Assignments(BBAs)originated from different information sources,the combination r... In the theory of belief functions,the evidence combination is a kind of decision-level information fusion.Given two or more Basic Belief Assignments(BBAs)originated from different information sources,the combination rule is used to combine them to expect a better decision result.When only a combined BBA is given and original BBAs are discarded,if one wants to analyze the difference between the information sources,evidence de-combination is needed to determine the original BBAs.Evidence de-combination can be considered as the inverse process of the information fusion.This paper focuses on such a defusion of information in the theory of belief functions.It is an under-determined problem if only the combined BBA is available.In this paper,two optimization-based approaches are proposed to de-combine a given BBA according to the criteria of divergence maximization and information maximization,respectively.The new proposed approaches can be used for two or more information sources.Some numerical examples and an example of application are provided to illustrate and validate our approaches. 展开更多
关键词 belief functions De-combination Divergence maximization Information fusion Information maximization
原文传递
Reliability Analysis of Excavator Rectifier Feedback System with Multi-State Components Based on Belief Universal Generating Function Method
8
作者 米金华 李彦锋 +2 位作者 黄洪钟 李爱峰 王晓明 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第3期344-348,共5页
In view of the complexity and uncertainty of system, both the state performances and state probabilities of multi-state components can be expressed by interval numbers. The belief function theory is used to characteri... In view of the complexity and uncertainty of system, both the state performances and state probabilities of multi-state components can be expressed by interval numbers. The belief function theory is used to characterize the uncertainty caused by various factors. A modified Markov model is proposed to obtain the state probabilities of components at any given moment and subsequently the mass function is used to represent the precise belief degree of state probabilities. Based on the primary studies of universal generating function(UGF)method, a belief UGF(BUGF) method is utilized to analyze the reliability and the uncertainty of excavator rectifier feedback system. This paper provides an available method to evaluate the reliability of multi-state systems(MSSs) with interval state performances and state probabilities, and also avoid the interval expansion problem. 展开更多
关键词 excavator rectifier feedback system multi-state components Markov model belief universal generating function
原文传递
Combination of classifiers with incomplete frames of discernment 被引量:1
9
作者 Zhunga LIU Jingfei DUAN +2 位作者 Linqing HUANG Jean DEZERT Yongqiang ZHAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第5期145-157,共13页
The methods for combining multiple classifiers based on belief functions require to work with a common and complete(closed)Frame of Discernment(Fo D)on which the belief functions are defined before making their combin... The methods for combining multiple classifiers based on belief functions require to work with a common and complete(closed)Frame of Discernment(Fo D)on which the belief functions are defined before making their combination.This theoretical requirement is however difficult to satisfy in practice because some abnormal(or unknown)objects that do not belong to any predefined class of the Fo D can appear in real classification applications.The classifiers learnt using different attributes information can provide complementary knowledge which is very useful for making the classification but they are usually based on different Fo Ds.In order to clearly identify the specific class of the abnormal objects,we propose a new method for combination of classifiers working with incomplete frames of discernment,named CCIF for short.This is a progressive detection method that select and add the detected abnormal objects to the training data set.Because one pattern can be considered as an abnormal object by one classifier and be committed to a specific class by another one,a weighted evidence combination method is proposed to fuse the classification results of multiple classifiers.This new method offers the advantage to make a refined classification of abnormal objects,and to improve the classification accuracy thanks to the complementarity of the classifiers.Some experimental results are given to validate the effectiveness of the proposed method using real data sets. 展开更多
关键词 Abnormal object belief functions Classifier fusion Evidence theory DETECTION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部