Belief propagation list(BPL) decoding for polar codes has attracted more attention due to its inherent parallel nature. However, a large gap still exists with CRC-aided SCL(CA-SCL) decoding.In this work, an improved s...Belief propagation list(BPL) decoding for polar codes has attracted more attention due to its inherent parallel nature. However, a large gap still exists with CRC-aided SCL(CA-SCL) decoding.In this work, an improved segmented belief propagation list decoding based on bit flipping(SBPL-BF) is proposed. On the one hand, the proposed algorithm makes use of the cooperative characteristic in BPL decoding such that the codeword is decoded in different BP decoders. Based on this characteristic, the unreliable bits for flipping could be split into multiple subblocks and could be flipped in different decoders simultaneously. On the other hand, a more flexible and effective processing strategy for the priori information of the unfrozen bits that do not need to be flipped is designed to improve the decoding convergence. In addition, this is the first proposal in BPL decoding which jointly optimizes the bit flipping of the information bits and the code bits. In particular, for bit flipping of the code bits, a H-matrix aided bit-flipping algorithm is designed to enhance the accuracy in identifying erroneous code bits. The simulation results show that the proposed algorithm significantly improves the errorcorrection performance of BPL decoding for medium and long codes. It is more than 0.25 d B better than the state-of-the-art BPL decoding at a block error rate(BLER) of 10^(-5), and outperforms CA-SCL decoding in the low signal-to-noise(SNR) region for(1024, 0.5)polar codes.展开更多
Quantum error-correction codes are immeasurable resources for quantum computing and quantum communication.However,the existing decoders are generally incapable of checking node duplication of belief propagation(BP)on ...Quantum error-correction codes are immeasurable resources for quantum computing and quantum communication.However,the existing decoders are generally incapable of checking node duplication of belief propagation(BP)on quantum low-density parity check(QLDPC)codes.Based on the probability theory in the machine learning,mathematical statistics and topological structure,a GF(4)(the Galois field is abbreviated as GF)augmented model BP decoder with Tanner graph is designed.The problem of repeated check nodes can be solved by this decoder.In simulation,when the random perturbation strength p=0.0115-0.0116 and number of attempts N=60-70,the highest decoding efficiency of the augmented model BP decoder is obtained,and the low-loss frame error rate(FER)decreases to 7.1975×10^(-5).Hence,we design a novel augmented model decoder to compare the relationship between GF(2)and GF(4)for quantum code[[450,200]]on the depolarization channel.It can be verified that the proposed decoder provides the widely application range,and the decoding performance is better in QLDPC codes.展开更多
Ultra-dense networking is widely accepted as a promising enabling technology to realize high power and spectrum efficient communications in future 5G communication systems. Although joint resource allocation schemes p...Ultra-dense networking is widely accepted as a promising enabling technology to realize high power and spectrum efficient communications in future 5G communication systems. Although joint resource allocation schemes promise huge performance improvement at the cost of cooperation among base stations,the large numbers of user equipment and base station make jointly optimizing the available resource very challenging and even prohibitive. How to decompose the resource allocation problem is a critical issue. In this paper,we exploit factor graphs to design a distributed resource allocation algorithm for ultra dense networks,which consists of power allocation,subcarrier allocation and cell association. The proposed factor graph based distributed algorithm can decompose the joint optimization problem of resource allocation into a series of low complexity subproblems with much lower dimensionality,and the original optimization problem can be efficiently solved via solving these subproblems iteratively. In addition,based on the proposed algorithm the amounts of exchanging information overhead between the resulting subprob-lems are also reduced. The proposed distributed algorithm can be understood as solving largely dimensional optimization problem in a soft manner,which is much preferred in practical scenarios. Finally,the performance of the proposed low complexity distributed algorithm is evaluated by several numerical results.展开更多
Non-uniform quantization for messages in Low-Density Parity-Check(LDPC)decoding canreduce implementation complexity and mitigate performance loss.But the distribution of messagesvaries in the iterative decoding.This l...Non-uniform quantization for messages in Low-Density Parity-Check(LDPC)decoding canreduce implementation complexity and mitigate performance loss.But the distribution of messagesvaries in the iterative decoding.This letter proposes a variable non-uniform quantized Belief Propaga-tion(BP)algorithm.The BP decoding is analyzed by density evolution with Gaussian approximation.Since the probability density of messages can be well approximated by Gaussian distribution,by theunbiased estimation of variance,the distribution of messages can be tracked during the iteration.Thusthe non-uniform quantization scheme can be optimized to minimize the distortion.Simulation resultsshow that the variable non-uniform quantization scheme can achieve better error rate performance andfaster decoding convergence than the conventional non-uniform quantization and uniform quantizationschemes.展开更多
Belief propagation(BP)decoding outputs soft information and can be naturally used in iterative receivers.BP list(BPL)decoding provides comparable error-correction performance to the successive cancellation list(SCL)de...Belief propagation(BP)decoding outputs soft information and can be naturally used in iterative receivers.BP list(BPL)decoding provides comparable error-correction performance to the successive cancellation list(SCL)decoding.In this paper,we firstly introduce an enhanced code construction scheme for BPL decoding to improve its errorcorrection capability.Then,a GPU-based BPL decoder with adoption of the new code construction is presented.Finally,the proposed BPL decoder is tested on NVIDIA RTX3070 and GTX1060.Experimental results show that the presented BPL decoder with early termination criterion achieves above 1 Gbps throughput on RTX3070 for the code(1024,512)with 32 lists under good channel conditions.展开更多
针对LDPC(Low Density Parity Check)码分层(LBP:Layered Belief-Propagation)译码算法计算复杂度高、不易于硬件实现的问题,提出一种改进算法。该算法首先引入函数f(x)使LBP译码算法的计算复杂度大大降低;同时引入具体参数校正因子和...针对LDPC(Low Density Parity Check)码分层(LBP:Layered Belief-Propagation)译码算法计算复杂度高、不易于硬件实现的问题,提出一种改进算法。该算法首先引入函数f(x)使LBP译码算法的计算复杂度大大降低;同时引入具体参数校正因子和偏移因子,提升译码性能。仿真结果表明,改进后的算法相比LBP算法在计算复杂度降低的同时,也提升了译码性能,从而达到了易于硬件实现的目的。展开更多
基金funded by the Key Project of NSFC-Guangdong Province Joint Program(Grant No.U2001204)the National Natural Science Foundation of China(Grant Nos.61873290 and 61972431)+1 种基金the Science and Technology Program of Guangzhou,China(Grant No.202002030470)the Funding Project of Featured Major of Guangzhou Xinhua University(2021TZ002).
文摘Belief propagation list(BPL) decoding for polar codes has attracted more attention due to its inherent parallel nature. However, a large gap still exists with CRC-aided SCL(CA-SCL) decoding.In this work, an improved segmented belief propagation list decoding based on bit flipping(SBPL-BF) is proposed. On the one hand, the proposed algorithm makes use of the cooperative characteristic in BPL decoding such that the codeword is decoded in different BP decoders. Based on this characteristic, the unreliable bits for flipping could be split into multiple subblocks and could be flipped in different decoders simultaneously. On the other hand, a more flexible and effective processing strategy for the priori information of the unfrozen bits that do not need to be flipped is designed to improve the decoding convergence. In addition, this is the first proposal in BPL decoding which jointly optimizes the bit flipping of the information bits and the code bits. In particular, for bit flipping of the code bits, a H-matrix aided bit-flipping algorithm is designed to enhance the accuracy in identifying erroneous code bits. The simulation results show that the proposed algorithm significantly improves the errorcorrection performance of BPL decoding for medium and long codes. It is more than 0.25 d B better than the state-of-the-art BPL decoding at a block error rate(BLER) of 10^(-5), and outperforms CA-SCL decoding in the low signal-to-noise(SNR) region for(1024, 0.5)polar codes.
基金the National Natural Science Foundation of China(Grant Nos.11975132 and 61772295)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2019YQ01)the Higher Education Science and Technology Program of Shandong Province,China(Grant No.J18KZ012).
文摘Quantum error-correction codes are immeasurable resources for quantum computing and quantum communication.However,the existing decoders are generally incapable of checking node duplication of belief propagation(BP)on quantum low-density parity check(QLDPC)codes.Based on the probability theory in the machine learning,mathematical statistics and topological structure,a GF(4)(the Galois field is abbreviated as GF)augmented model BP decoder with Tanner graph is designed.The problem of repeated check nodes can be solved by this decoder.In simulation,when the random perturbation strength p=0.0115-0.0116 and number of attempts N=60-70,the highest decoding efficiency of the augmented model BP decoder is obtained,and the low-loss frame error rate(FER)decreases to 7.1975×10^(-5).Hence,we design a novel augmented model decoder to compare the relationship between GF(2)and GF(4)for quantum code[[450,200]]on the depolarization channel.It can be verified that the proposed decoder provides the widely application range,and the decoding performance is better in QLDPC codes.
基金supported by China Mobile Research Institute under grant [2014] 451National Natural Science Foundation of China under Grant No. 61176027+2 种基金Beijing Natural Science Foundation(4152047)the 863 project No.2014AA01A701111 Project of China under Grant B14010
文摘Ultra-dense networking is widely accepted as a promising enabling technology to realize high power and spectrum efficient communications in future 5G communication systems. Although joint resource allocation schemes promise huge performance improvement at the cost of cooperation among base stations,the large numbers of user equipment and base station make jointly optimizing the available resource very challenging and even prohibitive. How to decompose the resource allocation problem is a critical issue. In this paper,we exploit factor graphs to design a distributed resource allocation algorithm for ultra dense networks,which consists of power allocation,subcarrier allocation and cell association. The proposed factor graph based distributed algorithm can decompose the joint optimization problem of resource allocation into a series of low complexity subproblems with much lower dimensionality,and the original optimization problem can be efficiently solved via solving these subproblems iteratively. In addition,based on the proposed algorithm the amounts of exchanging information overhead between the resulting subprob-lems are also reduced. The proposed distributed algorithm can be understood as solving largely dimensional optimization problem in a soft manner,which is much preferred in practical scenarios. Finally,the performance of the proposed low complexity distributed algorithm is evaluated by several numerical results.
基金the Aerospace Technology Support Foun-dation of China(No.J04-2005040).
文摘Non-uniform quantization for messages in Low-Density Parity-Check(LDPC)decoding canreduce implementation complexity and mitigate performance loss.But the distribution of messagesvaries in the iterative decoding.This letter proposes a variable non-uniform quantized Belief Propaga-tion(BP)algorithm.The BP decoding is analyzed by density evolution with Gaussian approximation.Since the probability density of messages can be well approximated by Gaussian distribution,by theunbiased estimation of variance,the distribution of messages can be tracked during the iteration.Thusthe non-uniform quantization scheme can be optimized to minimize the distortion.Simulation resultsshow that the variable non-uniform quantization scheme can achieve better error rate performance andfaster decoding convergence than the conventional non-uniform quantization and uniform quantizationschemes.
基金supported by the Fundamental Research Funds for the Central Universities (FRF-TP20-062A1)Guangdong Basic and Applied Basic Research Foundation (2021A1515110070)
文摘Belief propagation(BP)decoding outputs soft information and can be naturally used in iterative receivers.BP list(BPL)decoding provides comparable error-correction performance to the successive cancellation list(SCL)decoding.In this paper,we firstly introduce an enhanced code construction scheme for BPL decoding to improve its errorcorrection capability.Then,a GPU-based BPL decoder with adoption of the new code construction is presented.Finally,the proposed BPL decoder is tested on NVIDIA RTX3070 and GTX1060.Experimental results show that the presented BPL decoder with early termination criterion achieves above 1 Gbps throughput on RTX3070 for the code(1024,512)with 32 lists under good channel conditions.
文摘针对LDPC(Low Density Parity Check)码分层(LBP:Layered Belief-Propagation)译码算法计算复杂度高、不易于硬件实现的问题,提出一种改进算法。该算法首先引入函数f(x)使LBP译码算法的计算复杂度大大降低;同时引入具体参数校正因子和偏移因子,提升译码性能。仿真结果表明,改进后的算法相比LBP算法在计算复杂度降低的同时,也提升了译码性能,从而达到了易于硬件实现的目的。