Belief propagation list(BPL) decoding for polar codes has attracted more attention due to its inherent parallel nature. However, a large gap still exists with CRC-aided SCL(CA-SCL) decoding.In this work, an improved s...Belief propagation list(BPL) decoding for polar codes has attracted more attention due to its inherent parallel nature. However, a large gap still exists with CRC-aided SCL(CA-SCL) decoding.In this work, an improved segmented belief propagation list decoding based on bit flipping(SBPL-BF) is proposed. On the one hand, the proposed algorithm makes use of the cooperative characteristic in BPL decoding such that the codeword is decoded in different BP decoders. Based on this characteristic, the unreliable bits for flipping could be split into multiple subblocks and could be flipped in different decoders simultaneously. On the other hand, a more flexible and effective processing strategy for the priori information of the unfrozen bits that do not need to be flipped is designed to improve the decoding convergence. In addition, this is the first proposal in BPL decoding which jointly optimizes the bit flipping of the information bits and the code bits. In particular, for bit flipping of the code bits, a H-matrix aided bit-flipping algorithm is designed to enhance the accuracy in identifying erroneous code bits. The simulation results show that the proposed algorithm significantly improves the errorcorrection performance of BPL decoding for medium and long codes. It is more than 0.25 d B better than the state-of-the-art BPL decoding at a block error rate(BLER) of 10^(-5), and outperforms CA-SCL decoding in the low signal-to-noise(SNR) region for(1024, 0.5)polar codes.展开更多
Quantum error-correction codes are immeasurable resources for quantum computing and quantum communication.However,the existing decoders are generally incapable of checking node duplication of belief propagation(BP)on ...Quantum error-correction codes are immeasurable resources for quantum computing and quantum communication.However,the existing decoders are generally incapable of checking node duplication of belief propagation(BP)on quantum low-density parity check(QLDPC)codes.Based on the probability theory in the machine learning,mathematical statistics and topological structure,a GF(4)(the Galois field is abbreviated as GF)augmented model BP decoder with Tanner graph is designed.The problem of repeated check nodes can be solved by this decoder.In simulation,when the random perturbation strength p=0.0115-0.0116 and number of attempts N=60-70,the highest decoding efficiency of the augmented model BP decoder is obtained,and the low-loss frame error rate(FER)decreases to 7.1975×10^(-5).Hence,we design a novel augmented model decoder to compare the relationship between GF(2)and GF(4)for quantum code[[450,200]]on the depolarization channel.It can be verified that the proposed decoder provides the widely application range,and the decoding performance is better in QLDPC codes.展开更多
A new method for the construction of the high performance systematic irregular low-density paritycheck (LDPC) codes based on the sparse generator matrix (G-LDPC) is introduced. The code can greatly reduce the enco...A new method for the construction of the high performance systematic irregular low-density paritycheck (LDPC) codes based on the sparse generator matrix (G-LDPC) is introduced. The code can greatly reduce the encoding complexity while maintaining the same decoding complexity as traditional regular LDPC (H-LDPC) codes defined by the sparse parity check matrix. Simulation results show that the performance of the proposed irregular LDPC codes can offer significant gains over traditional LDPC codes in low SNRs with a few decoding iterations over an additive white Gaussian noise (AWGN) channel.展开更多
In this paper,a family of rate-compatible(RC) low-density parity-check(LDPC) convolutional codes can be obtained from RC-LDPC block codes by graph extension method.The resulted RC-LDPC convolutional codes,which are de...In this paper,a family of rate-compatible(RC) low-density parity-check(LDPC) convolutional codes can be obtained from RC-LDPC block codes by graph extension method.The resulted RC-LDPC convolutional codes,which are derived by permuting the matrices of the corresponding RC-LDPC block codes,are systematic and have maximum encoding memory.Simulation results show that the proposed RC-LDPC convolutional codes with belief propagation(BP) decoding collectively offer a steady improvement on performance compared with the block counterparts over the binary-input additive white Gaussian noise channels(BI-AWGNCs).展开更多
基金funded by the Key Project of NSFC-Guangdong Province Joint Program(Grant No.U2001204)the National Natural Science Foundation of China(Grant Nos.61873290 and 61972431)+1 种基金the Science and Technology Program of Guangzhou,China(Grant No.202002030470)the Funding Project of Featured Major of Guangzhou Xinhua University(2021TZ002).
文摘Belief propagation list(BPL) decoding for polar codes has attracted more attention due to its inherent parallel nature. However, a large gap still exists with CRC-aided SCL(CA-SCL) decoding.In this work, an improved segmented belief propagation list decoding based on bit flipping(SBPL-BF) is proposed. On the one hand, the proposed algorithm makes use of the cooperative characteristic in BPL decoding such that the codeword is decoded in different BP decoders. Based on this characteristic, the unreliable bits for flipping could be split into multiple subblocks and could be flipped in different decoders simultaneously. On the other hand, a more flexible and effective processing strategy for the priori information of the unfrozen bits that do not need to be flipped is designed to improve the decoding convergence. In addition, this is the first proposal in BPL decoding which jointly optimizes the bit flipping of the information bits and the code bits. In particular, for bit flipping of the code bits, a H-matrix aided bit-flipping algorithm is designed to enhance the accuracy in identifying erroneous code bits. The simulation results show that the proposed algorithm significantly improves the errorcorrection performance of BPL decoding for medium and long codes. It is more than 0.25 d B better than the state-of-the-art BPL decoding at a block error rate(BLER) of 10^(-5), and outperforms CA-SCL decoding in the low signal-to-noise(SNR) region for(1024, 0.5)polar codes.
基金the National Natural Science Foundation of China(Grant Nos.11975132 and 61772295)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2019YQ01)the Higher Education Science and Technology Program of Shandong Province,China(Grant No.J18KZ012).
文摘Quantum error-correction codes are immeasurable resources for quantum computing and quantum communication.However,the existing decoders are generally incapable of checking node duplication of belief propagation(BP)on quantum low-density parity check(QLDPC)codes.Based on the probability theory in the machine learning,mathematical statistics and topological structure,a GF(4)(the Galois field is abbreviated as GF)augmented model BP decoder with Tanner graph is designed.The problem of repeated check nodes can be solved by this decoder.In simulation,when the random perturbation strength p=0.0115-0.0116 and number of attempts N=60-70,the highest decoding efficiency of the augmented model BP decoder is obtained,and the low-loss frame error rate(FER)decreases to 7.1975×10^(-5).Hence,we design a novel augmented model decoder to compare the relationship between GF(2)and GF(4)for quantum code[[450,200]]on the depolarization channel.It can be verified that the proposed decoder provides the widely application range,and the decoding performance is better in QLDPC codes.
文摘A new method for the construction of the high performance systematic irregular low-density paritycheck (LDPC) codes based on the sparse generator matrix (G-LDPC) is introduced. The code can greatly reduce the encoding complexity while maintaining the same decoding complexity as traditional regular LDPC (H-LDPC) codes defined by the sparse parity check matrix. Simulation results show that the performance of the proposed irregular LDPC codes can offer significant gains over traditional LDPC codes in low SNRs with a few decoding iterations over an additive white Gaussian noise (AWGN) channel.
基金the National Natural Science Foundation of China(Nos.61401164,61471131 and 61201145)the Natural Science Foundation of Guangdong Province(No.2014A030310308)
文摘In this paper,a family of rate-compatible(RC) low-density parity-check(LDPC) convolutional codes can be obtained from RC-LDPC block codes by graph extension method.The resulted RC-LDPC convolutional codes,which are derived by permuting the matrices of the corresponding RC-LDPC block codes,are systematic and have maximum encoding memory.Simulation results show that the proposed RC-LDPC convolutional codes with belief propagation(BP) decoding collectively offer a steady improvement on performance compared with the block counterparts over the binary-input additive white Gaussian noise channels(BI-AWGNCs).