In recent years,with the continuous development of deep learning and knowledge graph reasoning methods,more and more researchers have shown great interest in improving knowledge graph reasoning methods by inferring mi...In recent years,with the continuous development of deep learning and knowledge graph reasoning methods,more and more researchers have shown great interest in improving knowledge graph reasoning methods by inferring missing facts through reasoning.By searching paths on the knowledge graph and making fact and link predictions based on these paths,deep learning-based Reinforcement Learning(RL)agents can demonstrate good performance and interpretability.Therefore,deep reinforcement learning-based knowledge reasoning methods have rapidly emerged in recent years and have become a hot research topic.However,even in a small and fixed knowledge graph reasoning action space,there are still a large number of invalid actions.It often leads to the interruption of RL agents’wandering due to the selection of invalid actions,resulting in a significant decrease in the success rate of path mining.In order to improve the success rate of RL agents in the early stages of path search,this article proposes a knowledge reasoning method based on Deep Transfer Reinforcement Learning path(DTRLpath).Before supervised pre-training and retraining,a pre-task of searching for effective actions in a single step is added.The RL agent is first trained in the pre-task to improve its ability to search for effective actions.Then,the trained agent is transferred to the target reasoning task for path search training,which improves its success rate in searching for target task paths.Finally,based on the comparative experimental results on the FB15K-237 and NELL-995 datasets,it can be concluded that the proposed method significantly improves the success rate of path search and outperforms similar methods in most reasoning tasks.展开更多
The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic me...The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic medical records(EMRs)and KGs into the knowledge reasoning process,ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text.To better integrate EMR text information,we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning(GATiT),which comprises text representation,subgraph construction,knowledge reasoning,and diagnostic classification.In the text representation process,GATiT uses a pre-trained model to obtain text representations of the EMRs and additionally enhances embeddings by including chief complaint information and numerical information in the input.In the subgraph construction process,GATiT constructs text subgraphs and disease subgraphs from the KG,utilizing EMR text and the disease to be diagnosed.To differentiate the varying importance of nodes within the subgraphs features such as node categories,relevance scores,and other relevant factors are introduced into the text subgraph.Themessage-passing strategy and attention weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning process.Finally,in the diagnostic classification process,the interactive attention-based fusion method integrates the results of knowledge reasoning with text representations to produce the final diagnosis results.Experimental results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-theart methods.展开更多
Background: Clinical reasoning is an essential skill for nursing students since it is required to solve difficulties that arise in complex clinical settings. However, teaching and learning clinical reasoning skills is...Background: Clinical reasoning is an essential skill for nursing students since it is required to solve difficulties that arise in complex clinical settings. However, teaching and learning clinical reasoning skills is difficult because of its complexity. This study, therefore aimed at exploring the challenges experienced by nurse educators in promoting acquisition of clinical reasoning skills by undergraduate nursing students. Methods: A qualitative exploratory research design was used in this study. The participants were purposively sampled and recruited into the study. Data were collected using semi-structured interview guides. Thematic analysis method was used to analyze the collected data The principles of beneficence, respect of human dignity and justice were observed. Results: The findings have shown that clinical learning environment, lacked material and human resources. The students had no interest to learn the skill. There was also knowledge gap between nurse educators and clinical nurses. Lack of role model was also an issue and limited time exposure. Conclusion: The study revealed that nurse educators encounter various challenges in promoting the acquisition of clinical reasoning skills among undergraduate nursing students. Training institutions and hospitals should periodically revise the curriculum and provide sufficient resources to facilitate effective teaching and learning of clinical reasoning. Nurse educators must also update their knowledge and skills through continuous professional development if they are to transfer the skill effectively.展开更多
Background: Clinical reasoning is a critical cognitive skill that enables undergraduate nursing students to make clinically sound decisions. A lapse in clinical reasoning can result in unintended harm to patients. The...Background: Clinical reasoning is a critical cognitive skill that enables undergraduate nursing students to make clinically sound decisions. A lapse in clinical reasoning can result in unintended harm to patients. The aim of the study was to assess and compare the levels of clinical reasoning skills between third year and fourth year undergraduate nursing students. Methods: The study utilized a descriptive comparative research design, based on the positivism paradigm. 410 undergraduate nursing students were systematically sampled and recruited into the study. The researchers used the Self-Assessment of Clinical Reflection and Reasoning questionnaire to collect data on clinical reasoning skills from third- and fourth-year nursing students while adhering to ethical principles of human dignity. Descriptive statistics were done to analyse the level of clinical reasoning and an independent sample t-test was performed to compare the clinical reasoning skills of the student. A p value of 0.05 was accepted. Results: The results of the study revealed that the mean clinical reasoning scores of the undergraduate nursing students were knowledge/theory application (M = 3.84;SD = 1.04);decision-making based on experience and evidence (M = 4.09;SD = 1.01);dealing with uncertainty (M = 3.93;SD = 0.87);reflection and reasoning (M = 3.77;SD = 3.88). The mean difference in clinical reasoning skills between third- and fourth-year undergraduate nursing students was not significantly different from an independent sample t-test scores (t = −1.08;p = 0.28);(t = −0.29;p = 0.73);(t = 1.19;p = 0.24);(t = −0.57;p = 0.57). Since the p-value is >0.05, the null hypothesis (H0) “there is no significantno significant difference in clinical reasoning between third year and fourth year undergraduate nursing students”, was accepted. Conclusion: This study has shown that the level of clinical reasoning skills of the undergraduate nursing students was moderate to low. This meant that the teaching methods have not been effective to improve the students clinical reasoning skills. Therefore, the training institutions should revise their curriculum by incorporating new teaching methods like simulation to enhance students’ clinical reasoning skills. In conclusion, evaluating clinical reasoning skills is crucial for addressing healthcare issues, validating teaching methods, and fostering continuous improvement in nursing education.展开更多
Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurr...Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurrent Temporal Graph Convolution Networks(IndRT-GCNets)framework to efficiently and accurately capture event attribute information.The framework models the knowledge graph sequences to learn the evolutionary represen-tations of entities and relations within each period.Firstly,by utilizing the temporal graph convolution module in the evolutionary representation unit,the framework captures the structural dependency relationships within the knowledge graph in each period.Meanwhile,to achieve better event representation and establish effective correlations,an independent recurrent neural network is employed to implement auto-regressive modeling.Furthermore,static attributes of entities in the entity-relation events are constrained andmerged using a static graph constraint to obtain optimal entity representations.Finally,the evolution of entity and relation representations is utilized to predict events in the next subsequent step.On multiple real-world datasets such as Freebase13(FB13),Freebase 15k(FB15K),WordNet11(WN11),WordNet18(WN18),FB15K-237,WN18RR,YAGO3-10,and Nell-995,the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms most existing models on knowledge reasoning tasks,which validates the effectiveness and robustness.展开更多
With the growing discovery of exposed vulnerabilities in the Industrial Control Components(ICCs),identification of the exploitable ones is urgent for Industrial Control System(ICS)administrators to proactively forecas...With the growing discovery of exposed vulnerabilities in the Industrial Control Components(ICCs),identification of the exploitable ones is urgent for Industrial Control System(ICS)administrators to proactively forecast potential threats.However,it is not a trivial task due to the complexity of the multi-source heterogeneous data and the lack of automatic analysis methods.To address these challenges,we propose an exploitability reasoning method based on the ICC-Vulnerability Knowledge Graph(KG)in which relation paths contain abundant potential evidence to support the reasoning.The reasoning task in this work refers to determining whether a specific relation is valid between an attacker entity and a possible exploitable vulnerability entity with the help of a collective of the critical paths.The proposed method consists of three primary building blocks:KG construction,relation path representation,and query relation reasoning.A security-oriented ontology combines exploit modeling,which provides a guideline for the integration of the scattered knowledge while constructing the KG.We emphasize the role of the aggregation of the attention mechanism in representation learning and ultimate reasoning.In order to acquire a high-quality representation,the entity and relation embeddings take advantage of their local structure and related semantics.Some critical paths are assigned corresponding attentive weights and then they are aggregated for the determination of the query relation validity.In particular,similarity calculation is introduced into a critical path selection algorithm,which improves search and reasoning performance.Meanwhile,the proposed algorithm avoids redundant paths between the given pairs of entities.Experimental results show that the proposed method outperforms the state-of-the-art ones in the aspects of embedding quality and query relation reasoning accuracy.展开更多
Cross-document relation extraction(RE),as an extension of information extraction,requires integrating information from multiple documents retrieved from open domains with a large number of irrelevant or confusing nois...Cross-document relation extraction(RE),as an extension of information extraction,requires integrating information from multiple documents retrieved from open domains with a large number of irrelevant or confusing noisy texts.Previous studies focus on the attention mechanism to construct the connection between different text features through semantic similarity.However,similarity-based methods cannot distinguish valid information from highly similar retrieved documents well.How to design an effective algorithm to implement aggregated reasoning in confusing information with similar features still remains an open issue.To address this problem,we design a novel local-toglobal causal reasoning(LGCR)network for cross-document RE,which enables efficient distinguishing,filtering and global reasoning on complex information from a causal perspective.Specifically,we propose a local causal estimation algorithm to estimate the causal effect,which is the first trial to use the causal reasoning independent of feature similarity to distinguish between confusing and valid information in cross-document RE.Furthermore,based on the causal effect,we propose a causality guided global reasoning algorithm to filter the confusing information and achieve global reasoning.Experimental results under the closed and the open settings of the large-scale dataset Cod RED demonstrate our LGCR network significantly outperforms the state-ofthe-art methods and validate the effectiveness of causal reasoning in confusing information processing.展开更多
Aiming at the dynamics and uncertainties of natural colors affected by the natural environment,a color P-law generation model based on the natural environment is proposed to develop algorithms and to provide a theoret...Aiming at the dynamics and uncertainties of natural colors affected by the natural environment,a color P-law generation model based on the natural environment is proposed to develop algorithms and to provide a theoretical basis for plant dynamic color simulation and color sensor data transmission.Based on the HSL(Hue,Saturation,Lightness)color solid,the proposed method uses the function P-set to provide a color P-law generation model and an algorithm of the Dynamic Colors System(DCS),establishing the DCS modeling theory of the natural environment and the color P-reasoning simulation based on the HSL color solid.The experimental results show that based on the color P-law,for the DCS of the natural environment,when the external factors change,the color of the plant changes,accordingly,verifying the effectiveness of the color P-law generation model and the algorithm of the DCS.In the dynamic color intel-ligent simulation system,when external factors change,the dynamic change of plant color generally conforms to the basic laws of the natural environment.This enables the effective extraction of color data from the Internet of Things(IoT)-based color sensors and provides an effective way to significantly reduce the data transmission bandwidth of the IoT network.展开更多
Tropical cyclones(TC)are often associated with severe weather conditions which cause great losses to lives and property.The precise classification of cyclone tracks is significantly important in thefield of weather fo...Tropical cyclones(TC)are often associated with severe weather conditions which cause great losses to lives and property.The precise classification of cyclone tracks is significantly important in thefield of weather forecasting.In this paper we propose a novel hybrid model that integrates ontology and Support Vector Machine(SVM)to classify the tropical cyclone tracks into four types of classes namely straight,quasi-straight,curving and sinuous based on the track shape.Tropical Cyclone TRacks Ontology(TCTRO)described in this paper is a knowledge base which comprises of classes,objects and data properties that represent the interaction among the TC characteristics.A set of SWRL(Semantic Web Rule Language)rules are directly inserted to the TCTRO ontology for reasoning and inferring new knowledge from ontology.Furthermore,we propose a learning algorithm which utilizes the inferred knowledge for optimizing the feature subset.According to experiments on the IBTrACS dataset,the proposed ontology based SVM classifier achieves an accuracy of 98.3%with reduced classification error rates.展开更多
Railway Point System(RPS)is an important infrastructure in railway industry and its faults may have significant impacts on the safety and efficiency of train operations.For the fault diagnosis of RPS,most existing met...Railway Point System(RPS)is an important infrastructure in railway industry and its faults may have significant impacts on the safety and efficiency of train operations.For the fault diagnosis of RPS,most existing methods assume that sufficient samples of each failure mode are available,which may be unrealistic,especially for those modes of low occurrence frequency but with high risk.To address this issue,this work proposes a novel fault diagnosis method that only requires the power signals generated under normal RPS operations in the training stage.Specifically,the failure modes of RPS are distinguished through constructing a reasoning diagram,whose nodes are either binary logic problems or those that can be decomposed into the problems of the binary logic.Then,an unsupervised method for the signal segmentation and a fault detection method are combined to make decisions for each binary logic problem.Based on the results of decisions,the diagnostic rules are established to identify the failure modes.Finally,the data collected from multiple real-world RPSs are used for validation and the results demonstrate that the proposed method outperforms the benchmark in identifying the faults of RPSs.展开更多
Cable fire is one of the most important events for operation and maintenance(O&M)safety in underground utility tunnels(UUTs).Since there are limited studies about cable fire risk assessment,a comprehensive assessm...Cable fire is one of the most important events for operation and maintenance(O&M)safety in underground utility tunnels(UUTs).Since there are limited studies about cable fire risk assessment,a comprehensive assessment model is proposed to evaluate the cable fire risk in different UUT sections and improve O&M efficiency.Considering the uncertainties in the risk assessment,an evidential reasoning(ER)approach is used to combine quantitative sensor data and qualitative expert judgments.Meanwhile,a data transformation technique is contributed to transform continuous data into a five-grade distributed assessment.Then,a case study demonstrates how the model and the ER approach are established.The results show that in Shenzhen,China,the cable fire risk in District 8,B Road is the lowest,while more resources should be paid in District 3,C Road and District 25,C Road,which are selected as comparative roads.Based on the model,a data-driven O&M process is proposed to improve the O&M effectiveness,compared with traditional methods.This study contributes an effective ER-based cable fire evaluation model to improve the O&M efficiency of cable fire in UUTs.展开更多
Earthquake-triggered liquefaction deformation could lead to severe infrastructure damage and associated casualties and property damage.At present,there are few studies on the rapid extraction of liquefaction pits base...Earthquake-triggered liquefaction deformation could lead to severe infrastructure damage and associated casualties and property damage.At present,there are few studies on the rapid extraction of liquefaction pits based on high-resolution satellite images.Therefore,we provide a framework for extracting liquefaction pits based on a case-based reasoning method.Furthermore,five covariates selection methods were used to filter the 11 covariates that were generated from high-resolution satellite images and digital elevation models(DEM).The proposed method was trained with 450 typical samples which were collected based on visual interpretation,then used the trained case-based reasoning method to identify the liquefaction pits in the whole study area.The performance of the proposed methods was evaluated from three aspects,the prediction accuracies of liquefaction pits based on the validation samples by kappa index,the comparison between the pre-and post-earthquake images,the rationality of spatial distribution of liquefaction pits.The final result shows the importance of covariates ranked by different methods could be different.However,the most important of covariates is consistent.When selecting five most important covariates,the value of kappa index could be about 96%.There also exist clear differences between the pre-and post-earthquake areas that were identified as liquefaction pits.The predicted spatial distribution of liquefaction is also consistent with the formation principle of liquefaction.展开更多
The retarding effect of protein retarder on phosphorus building gypsum(PBG)and desulfurization building gypsum(DBG)was investigated,and the results show that protein retarder for DBG can effectively prolong the settin...The retarding effect of protein retarder on phosphorus building gypsum(PBG)and desulfurization building gypsum(DBG)was investigated,and the results show that protein retarder for DBG can effectively prolong the setting time and displays a better retarding effect,but for PBG shows a poor retarding effect.Furthermore,the deterioration reason of the retarding effect of protein retarder on PBG was investigated by measuring the pH value and the retarder concentration of the liquid phase from vacuum filtration of PBG slurry at different hydration time,and the measure to improve the retarding effect of protein retarding on PBG was suggested.The pH value of PBG slurry(<5.0)is lower than that of DBG slurry(7.8-8.5).After hydration for 5 min,the concentration of retarder in liquid phase of DBG slurry gradually decreases,but in liquid phase of PBG slurry continually increases,which results in the worse retarding effect of protein retarder on PBG.The liquid phase pH value of PBG slurry can be adjusted higher by sodium silicate,which is beneficial to improvement in the retarding effect of the retarder.By adding 1.0%of sodium silicate,the initial setting time of PBG was efficiently prolonged from 17 to 210 min,but little effect on the absolute dry flexural strength was observed.展开更多
Similarity has been playing an important role in computer science,artificial intelligence(AI)and data science.However,similarity intelligence has been ignored in these disciplines.Similarity intelligence is a process ...Similarity has been playing an important role in computer science,artificial intelligence(AI)and data science.However,similarity intelligence has been ignored in these disciplines.Similarity intelligence is a process of discovering intelligence through similarity.This article will explore similarity intelligence,similarity-based reasoning,similarity computing and analytics.More specifically,this article looks at the similarity as an intelligence and its impact on a few areas in the real world.It explores similarity intelligence accompanying experience-based intelligence,knowledge-based intelligence,and data-based intelligence to play an important role in computer science,AI,and data science.This article explores similarity-based reasoning(SBR)and proposes three similarity-based inference rules.It then examines similarity computing and analytics,and a multiagent SBR system.The main contributions of this article are:1)Similarity intelligence is discovered from experience-based intelligence consisting of data-based intelligence and knowledge-based intelligence.2)Similarity-based reasoning,computing and analytics can be used to create similarity intelligence.The proposed approach will facilitate research and development of similarity intelligence,similarity computing and analytics,machine learning and case-based reasoning.展开更多
Aiming at practical demands of manufacturing enterprises to the CAPP system in the Internet age, the CAPP model is presented based on Web and featured by open, universality and intelligence. A CAPP software package is...Aiming at practical demands of manufacturing enterprises to the CAPP system in the Internet age, the CAPP model is presented based on Web and featured by open, universality and intelligence. A CAPP software package is developed with three layer structures (the database, the Web server and the client server) to realize CAPP online services. In the CAPP software package, a new process planning method called the successive casebased reasoning is presented. Using the method, process planning procedures are divided into three layers (the process planning, the process procedure and the process step), which are treated with the successive process reasoning. Process planning rules can be regularly described due to the granularity-based rule classification. The CAPP software package combines CAPP software with online services. The process planning has the features of variant analogy and generative creation due to adopting the successive case-based reasoning, thus improving the universality and the practicability of the process planning.展开更多
presented The conceptions of abstract default reasoning frameworks (ADRFs) and D-consequence relations are Based on representation properties of D-consequence relations, it proves that any cumulative nonmonotonic co...presented The conceptions of abstract default reasoning frameworks (ADRFs) and D-consequence relations are Based on representation properties of D-consequence relations, it proves that any cumulative nonmonotonic consequence relation with the connective-free form can be represented by ADRFs.展开更多
The current extended fuzzy description logics lack reasoning algorithms with TBoxes. The problem of the satisfiability of the extended fuzzy description logic EFALC cut concepts w. r. t. TBoxes is proposed, and a reas...The current extended fuzzy description logics lack reasoning algorithms with TBoxes. The problem of the satisfiability of the extended fuzzy description logic EFALC cut concepts w. r. t. TBoxes is proposed, and a reasoning algorithm is given. This algorithm is designed in the style of tableau algorithms, which is usually used in classical description logics. The transformation rules and the process of this algorithm is described and optimized with three main techniques: recursive procedure call, branch cutting and introducing sets of mesne results. The optimized algorithm is proved sound, complete and with an EXPTime complexity, and the satisfiability problem is EXPTime-complete.展开更多
To solve the extended fuzzy description logic with qualifying number restriction (EFALCQ) reasoning problems, EFALCQ is discretely simulated by description logic with qualifying number restriction (ALCQ), and ALCQ...To solve the extended fuzzy description logic with qualifying number restriction (EFALCQ) reasoning problems, EFALCQ is discretely simulated by description logic with qualifying number restriction (ALCQ), and ALCQ reasoning results are reused to prove the complexity of EFALCQ reasoning problems. The ALCQ simulation method for the consistency of EFALCQ is proposed. This method reduces EFALCQ satisfiability into EFALCQ consistency, and uses EFALCQ satisfiability to discretely simulate EFALCQ satdomain. It is proved that the reasoning complexity for EFALCQ satisfiability, consistency and sat-domain is PSPACE-complete.展开更多
基金supported by Key Laboratory of Information System Requirement,No.LHZZ202202Natural Science Foundation of Xinjiang Uyghur Autonomous Region(2023D01C55)Scientific Research Program of the Higher Education Institution of Xinjiang(XJEDU2023P127).
文摘In recent years,with the continuous development of deep learning and knowledge graph reasoning methods,more and more researchers have shown great interest in improving knowledge graph reasoning methods by inferring missing facts through reasoning.By searching paths on the knowledge graph and making fact and link predictions based on these paths,deep learning-based Reinforcement Learning(RL)agents can demonstrate good performance and interpretability.Therefore,deep reinforcement learning-based knowledge reasoning methods have rapidly emerged in recent years and have become a hot research topic.However,even in a small and fixed knowledge graph reasoning action space,there are still a large number of invalid actions.It often leads to the interruption of RL agents’wandering due to the selection of invalid actions,resulting in a significant decrease in the success rate of path mining.In order to improve the success rate of RL agents in the early stages of path search,this article proposes a knowledge reasoning method based on Deep Transfer Reinforcement Learning path(DTRLpath).Before supervised pre-training and retraining,a pre-task of searching for effective actions in a single step is added.The RL agent is first trained in the pre-task to improve its ability to search for effective actions.Then,the trained agent is transferred to the target reasoning task for path search training,which improves its success rate in searching for target task paths.Finally,based on the comparative experimental results on the FB15K-237 and NELL-995 datasets,it can be concluded that the proposed method significantly improves the success rate of path search and outperforms similar methods in most reasoning tasks.
基金supported in part by the Science and Technology Innovation 2030-“New Generation of Artificial Intelligence”Major Project(No.2021ZD0111000)Henan Provincial Science and Technology Research Project(No.232102211039).
文摘The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic medical records(EMRs)and KGs into the knowledge reasoning process,ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text.To better integrate EMR text information,we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning(GATiT),which comprises text representation,subgraph construction,knowledge reasoning,and diagnostic classification.In the text representation process,GATiT uses a pre-trained model to obtain text representations of the EMRs and additionally enhances embeddings by including chief complaint information and numerical information in the input.In the subgraph construction process,GATiT constructs text subgraphs and disease subgraphs from the KG,utilizing EMR text and the disease to be diagnosed.To differentiate the varying importance of nodes within the subgraphs features such as node categories,relevance scores,and other relevant factors are introduced into the text subgraph.Themessage-passing strategy and attention weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning process.Finally,in the diagnostic classification process,the interactive attention-based fusion method integrates the results of knowledge reasoning with text representations to produce the final diagnosis results.Experimental results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-theart methods.
文摘Background: Clinical reasoning is an essential skill for nursing students since it is required to solve difficulties that arise in complex clinical settings. However, teaching and learning clinical reasoning skills is difficult because of its complexity. This study, therefore aimed at exploring the challenges experienced by nurse educators in promoting acquisition of clinical reasoning skills by undergraduate nursing students. Methods: A qualitative exploratory research design was used in this study. The participants were purposively sampled and recruited into the study. Data were collected using semi-structured interview guides. Thematic analysis method was used to analyze the collected data The principles of beneficence, respect of human dignity and justice were observed. Results: The findings have shown that clinical learning environment, lacked material and human resources. The students had no interest to learn the skill. There was also knowledge gap between nurse educators and clinical nurses. Lack of role model was also an issue and limited time exposure. Conclusion: The study revealed that nurse educators encounter various challenges in promoting the acquisition of clinical reasoning skills among undergraduate nursing students. Training institutions and hospitals should periodically revise the curriculum and provide sufficient resources to facilitate effective teaching and learning of clinical reasoning. Nurse educators must also update their knowledge and skills through continuous professional development if they are to transfer the skill effectively.
文摘Background: Clinical reasoning is a critical cognitive skill that enables undergraduate nursing students to make clinically sound decisions. A lapse in clinical reasoning can result in unintended harm to patients. The aim of the study was to assess and compare the levels of clinical reasoning skills between third year and fourth year undergraduate nursing students. Methods: The study utilized a descriptive comparative research design, based on the positivism paradigm. 410 undergraduate nursing students were systematically sampled and recruited into the study. The researchers used the Self-Assessment of Clinical Reflection and Reasoning questionnaire to collect data on clinical reasoning skills from third- and fourth-year nursing students while adhering to ethical principles of human dignity. Descriptive statistics were done to analyse the level of clinical reasoning and an independent sample t-test was performed to compare the clinical reasoning skills of the student. A p value of 0.05 was accepted. Results: The results of the study revealed that the mean clinical reasoning scores of the undergraduate nursing students were knowledge/theory application (M = 3.84;SD = 1.04);decision-making based on experience and evidence (M = 4.09;SD = 1.01);dealing with uncertainty (M = 3.93;SD = 0.87);reflection and reasoning (M = 3.77;SD = 3.88). The mean difference in clinical reasoning skills between third- and fourth-year undergraduate nursing students was not significantly different from an independent sample t-test scores (t = −1.08;p = 0.28);(t = −0.29;p = 0.73);(t = 1.19;p = 0.24);(t = −0.57;p = 0.57). Since the p-value is >0.05, the null hypothesis (H0) “there is no significantno significant difference in clinical reasoning between third year and fourth year undergraduate nursing students”, was accepted. Conclusion: This study has shown that the level of clinical reasoning skills of the undergraduate nursing students was moderate to low. This meant that the teaching methods have not been effective to improve the students clinical reasoning skills. Therefore, the training institutions should revise their curriculum by incorporating new teaching methods like simulation to enhance students’ clinical reasoning skills. In conclusion, evaluating clinical reasoning skills is crucial for addressing healthcare issues, validating teaching methods, and fostering continuous improvement in nursing education.
基金the National Natural Science Founda-tion of China(62062062)hosted by Gulila Altenbek.
文摘Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurrent Temporal Graph Convolution Networks(IndRT-GCNets)framework to efficiently and accurately capture event attribute information.The framework models the knowledge graph sequences to learn the evolutionary represen-tations of entities and relations within each period.Firstly,by utilizing the temporal graph convolution module in the evolutionary representation unit,the framework captures the structural dependency relationships within the knowledge graph in each period.Meanwhile,to achieve better event representation and establish effective correlations,an independent recurrent neural network is employed to implement auto-regressive modeling.Furthermore,static attributes of entities in the entity-relation events are constrained andmerged using a static graph constraint to obtain optimal entity representations.Finally,the evolution of entity and relation representations is utilized to predict events in the next subsequent step.On multiple real-world datasets such as Freebase13(FB13),Freebase 15k(FB15K),WordNet11(WN11),WordNet18(WN18),FB15K-237,WN18RR,YAGO3-10,and Nell-995,the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms most existing models on knowledge reasoning tasks,which validates the effectiveness and robustness.
基金Our work is supported by the National Key R&D Program of China(2021YFB2012400).
文摘With the growing discovery of exposed vulnerabilities in the Industrial Control Components(ICCs),identification of the exploitable ones is urgent for Industrial Control System(ICS)administrators to proactively forecast potential threats.However,it is not a trivial task due to the complexity of the multi-source heterogeneous data and the lack of automatic analysis methods.To address these challenges,we propose an exploitability reasoning method based on the ICC-Vulnerability Knowledge Graph(KG)in which relation paths contain abundant potential evidence to support the reasoning.The reasoning task in this work refers to determining whether a specific relation is valid between an attacker entity and a possible exploitable vulnerability entity with the help of a collective of the critical paths.The proposed method consists of three primary building blocks:KG construction,relation path representation,and query relation reasoning.A security-oriented ontology combines exploit modeling,which provides a guideline for the integration of the scattered knowledge while constructing the KG.We emphasize the role of the aggregation of the attention mechanism in representation learning and ultimate reasoning.In order to acquire a high-quality representation,the entity and relation embeddings take advantage of their local structure and related semantics.Some critical paths are assigned corresponding attentive weights and then they are aggregated for the determination of the query relation validity.In particular,similarity calculation is introduced into a critical path selection algorithm,which improves search and reasoning performance.Meanwhile,the proposed algorithm avoids redundant paths between the given pairs of entities.Experimental results show that the proposed method outperforms the state-of-the-art ones in the aspects of embedding quality and query relation reasoning accuracy.
基金supported in part by the National Key Research and Development Program of China(2022ZD0116405)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA27030300)the Key Research Program of the Chinese Academy of Sciences(ZDBS-SSW-JSC006)。
文摘Cross-document relation extraction(RE),as an extension of information extraction,requires integrating information from multiple documents retrieved from open domains with a large number of irrelevant or confusing noisy texts.Previous studies focus on the attention mechanism to construct the connection between different text features through semantic similarity.However,similarity-based methods cannot distinguish valid information from highly similar retrieved documents well.How to design an effective algorithm to implement aggregated reasoning in confusing information with similar features still remains an open issue.To address this problem,we design a novel local-toglobal causal reasoning(LGCR)network for cross-document RE,which enables efficient distinguishing,filtering and global reasoning on complex information from a causal perspective.Specifically,we propose a local causal estimation algorithm to estimate the causal effect,which is the first trial to use the causal reasoning independent of feature similarity to distinguish between confusing and valid information in cross-document RE.Furthermore,based on the causal effect,we propose a causality guided global reasoning algorithm to filter the confusing information and achieve global reasoning.Experimental results under the closed and the open settings of the large-scale dataset Cod RED demonstrate our LGCR network significantly outperforms the state-ofthe-art methods and validate the effectiveness of causal reasoning in confusing information processing.
基金funded by the Natural Science Foundation Project of Fujian Provincial Department of science and technology,Grant No.:2020J01385Digital Fujian industrial energy big data research institute,Grant No.KB180045Provincial Key Laboratory of industrial big data analysis and Application,Grant No.KB180029,Sanming City 5G Innovation Laboratory,Grant No.:2020 MK18.
文摘Aiming at the dynamics and uncertainties of natural colors affected by the natural environment,a color P-law generation model based on the natural environment is proposed to develop algorithms and to provide a theoretical basis for plant dynamic color simulation and color sensor data transmission.Based on the HSL(Hue,Saturation,Lightness)color solid,the proposed method uses the function P-set to provide a color P-law generation model and an algorithm of the Dynamic Colors System(DCS),establishing the DCS modeling theory of the natural environment and the color P-reasoning simulation based on the HSL color solid.The experimental results show that based on the color P-law,for the DCS of the natural environment,when the external factors change,the color of the plant changes,accordingly,verifying the effectiveness of the color P-law generation model and the algorithm of the DCS.In the dynamic color intel-ligent simulation system,when external factors change,the dynamic change of plant color generally conforms to the basic laws of the natural environment.This enables the effective extraction of color data from the Internet of Things(IoT)-based color sensors and provides an effective way to significantly reduce the data transmission bandwidth of the IoT network.
文摘Tropical cyclones(TC)are often associated with severe weather conditions which cause great losses to lives and property.The precise classification of cyclone tracks is significantly important in thefield of weather forecasting.In this paper we propose a novel hybrid model that integrates ontology and Support Vector Machine(SVM)to classify the tropical cyclone tracks into four types of classes namely straight,quasi-straight,curving and sinuous based on the track shape.Tropical Cyclone TRacks Ontology(TCTRO)described in this paper is a knowledge base which comprises of classes,objects and data properties that represent the interaction among the TC characteristics.A set of SWRL(Semantic Web Rule Language)rules are directly inserted to the TCTRO ontology for reasoning and inferring new knowledge from ontology.Furthermore,we propose a learning algorithm which utilizes the inferred knowledge for optimizing the feature subset.According to experiments on the IBTrACS dataset,the proposed ontology based SVM classifier achieves an accuracy of 98.3%with reduced classification error rates.
基金supported by National Key R&D Program of China(2022YFB2602203)Talent Fund of Beijing Jiaotong University(2021RC274,I22L00131)National Natural Science Foundation of China(U1934219,52202392,52022010,U22A2046,52172322,62271486,62120106011,52172323)。
文摘Railway Point System(RPS)is an important infrastructure in railway industry and its faults may have significant impacts on the safety and efficiency of train operations.For the fault diagnosis of RPS,most existing methods assume that sufficient samples of each failure mode are available,which may be unrealistic,especially for those modes of low occurrence frequency but with high risk.To address this issue,this work proposes a novel fault diagnosis method that only requires the power signals generated under normal RPS operations in the training stage.Specifically,the failure modes of RPS are distinguished through constructing a reasoning diagram,whose nodes are either binary logic problems or those that can be decomposed into the problems of the binary logic.Then,an unsupervised method for the signal segmentation and a fault detection method are combined to make decisions for each binary logic problem.Based on the results of decisions,the diagnostic rules are established to identify the failure modes.Finally,the data collected from multiple real-world RPSs are used for validation and the results demonstrate that the proposed method outperforms the benchmark in identifying the faults of RPSs.
基金Airport New City Utility Tunnel PhaseⅡProject,China。
文摘Cable fire is one of the most important events for operation and maintenance(O&M)safety in underground utility tunnels(UUTs).Since there are limited studies about cable fire risk assessment,a comprehensive assessment model is proposed to evaluate the cable fire risk in different UUT sections and improve O&M efficiency.Considering the uncertainties in the risk assessment,an evidential reasoning(ER)approach is used to combine quantitative sensor data and qualitative expert judgments.Meanwhile,a data transformation technique is contributed to transform continuous data into a five-grade distributed assessment.Then,a case study demonstrates how the model and the ER approach are established.The results show that in Shenzhen,China,the cable fire risk in District 8,B Road is the lowest,while more resources should be paid in District 3,C Road and District 25,C Road,which are selected as comparative roads.Based on the model,a data-driven O&M process is proposed to improve the O&M effectiveness,compared with traditional methods.This study contributes an effective ER-based cable fire evaluation model to improve the O&M efficiency of cable fire in UUTs.
基金Basic Research program from the Institute of Earthquake Forecasting, China Earthquake Administration(Grant No. 2021IEF0505, CEAIEF20220102, and CEAIEF2022050502)high-resolution seismic monitoring and emergency application demonstration (phase Ⅱ)(Grant No. 31-Y30F09-9001-20/22)+1 种基金the National Natural Science Foundation of China (Grant No. 42072248 and 42041006)the National Key Research and Development Program of China (Grant No. 2021YFC3000601-3 and 2019YFE0108900).
文摘Earthquake-triggered liquefaction deformation could lead to severe infrastructure damage and associated casualties and property damage.At present,there are few studies on the rapid extraction of liquefaction pits based on high-resolution satellite images.Therefore,we provide a framework for extracting liquefaction pits based on a case-based reasoning method.Furthermore,five covariates selection methods were used to filter the 11 covariates that were generated from high-resolution satellite images and digital elevation models(DEM).The proposed method was trained with 450 typical samples which were collected based on visual interpretation,then used the trained case-based reasoning method to identify the liquefaction pits in the whole study area.The performance of the proposed methods was evaluated from three aspects,the prediction accuracies of liquefaction pits based on the validation samples by kappa index,the comparison between the pre-and post-earthquake images,the rationality of spatial distribution of liquefaction pits.The final result shows the importance of covariates ranked by different methods could be different.However,the most important of covariates is consistent.When selecting five most important covariates,the value of kappa index could be about 96%.There also exist clear differences between the pre-and post-earthquake areas that were identified as liquefaction pits.The predicted spatial distribution of liquefaction is also consistent with the formation principle of liquefaction.
文摘The retarding effect of protein retarder on phosphorus building gypsum(PBG)and desulfurization building gypsum(DBG)was investigated,and the results show that protein retarder for DBG can effectively prolong the setting time and displays a better retarding effect,but for PBG shows a poor retarding effect.Furthermore,the deterioration reason of the retarding effect of protein retarder on PBG was investigated by measuring the pH value and the retarder concentration of the liquid phase from vacuum filtration of PBG slurry at different hydration time,and the measure to improve the retarding effect of protein retarding on PBG was suggested.The pH value of PBG slurry(<5.0)is lower than that of DBG slurry(7.8-8.5).After hydration for 5 min,the concentration of retarder in liquid phase of DBG slurry gradually decreases,but in liquid phase of PBG slurry continually increases,which results in the worse retarding effect of protein retarder on PBG.The liquid phase pH value of PBG slurry can be adjusted higher by sodium silicate,which is beneficial to improvement in the retarding effect of the retarder.By adding 1.0%of sodium silicate,the initial setting time of PBG was efficiently prolonged from 17 to 210 min,but little effect on the absolute dry flexural strength was observed.
文摘Similarity has been playing an important role in computer science,artificial intelligence(AI)and data science.However,similarity intelligence has been ignored in these disciplines.Similarity intelligence is a process of discovering intelligence through similarity.This article will explore similarity intelligence,similarity-based reasoning,similarity computing and analytics.More specifically,this article looks at the similarity as an intelligence and its impact on a few areas in the real world.It explores similarity intelligence accompanying experience-based intelligence,knowledge-based intelligence,and data-based intelligence to play an important role in computer science,AI,and data science.This article explores similarity-based reasoning(SBR)and proposes three similarity-based inference rules.It then examines similarity computing and analytics,and a multiagent SBR system.The main contributions of this article are:1)Similarity intelligence is discovered from experience-based intelligence consisting of data-based intelligence and knowledge-based intelligence.2)Similarity-based reasoning,computing and analytics can be used to create similarity intelligence.The proposed approach will facilitate research and development of similarity intelligence,similarity computing and analytics,machine learning and case-based reasoning.
文摘Aiming at practical demands of manufacturing enterprises to the CAPP system in the Internet age, the CAPP model is presented based on Web and featured by open, universality and intelligence. A CAPP software package is developed with three layer structures (the database, the Web server and the client server) to realize CAPP online services. In the CAPP software package, a new process planning method called the successive casebased reasoning is presented. Using the method, process planning procedures are divided into three layers (the process planning, the process procedure and the process step), which are treated with the successive process reasoning. Process planning rules can be regularly described due to the granularity-based rule classification. The CAPP software package combines CAPP software with online services. The process planning has the features of variant analogy and generative creation due to adopting the successive case-based reasoning, thus improving the universality and the practicability of the process planning.
文摘presented The conceptions of abstract default reasoning frameworks (ADRFs) and D-consequence relations are Based on representation properties of D-consequence relations, it proves that any cumulative nonmonotonic consequence relation with the connective-free form can be represented by ADRFs.
基金The National Natural Science Foundation of China(No60403016),the Weaponry Equipment Foundation of PLA Equip-ment Ministry (No51406020105JB8103)
文摘The current extended fuzzy description logics lack reasoning algorithms with TBoxes. The problem of the satisfiability of the extended fuzzy description logic EFALC cut concepts w. r. t. TBoxes is proposed, and a reasoning algorithm is given. This algorithm is designed in the style of tableau algorithms, which is usually used in classical description logics. The transformation rules and the process of this algorithm is described and optimized with three main techniques: recursive procedure call, branch cutting and introducing sets of mesne results. The optimized algorithm is proved sound, complete and with an EXPTime complexity, and the satisfiability problem is EXPTime-complete.
基金The National Natural Science Foundation of China(No60403016)the Weaponry Equipment Foundation of PLA Equip-ment Ministry (No51406020105JB8103)
文摘To solve the extended fuzzy description logic with qualifying number restriction (EFALCQ) reasoning problems, EFALCQ is discretely simulated by description logic with qualifying number restriction (ALCQ), and ALCQ reasoning results are reused to prove the complexity of EFALCQ reasoning problems. The ALCQ simulation method for the consistency of EFALCQ is proposed. This method reduces EFALCQ satisfiability into EFALCQ consistency, and uses EFALCQ satisfiability to discretely simulate EFALCQ satdomain. It is proved that the reasoning complexity for EFALCQ satisfiability, consistency and sat-domain is PSPACE-complete.