The purpose of this note is to establish a general representation of Hankel matrices of Bell numbers and the convoluted Bell numbers. As a special case, the results of Aigner are extended.
We propose a biased random number generation protocol whose randomness is based on the violation of the Clauser Home inequality. Non-maximally entangled state is used to maximize the Bell violation. Due to the rotatio...We propose a biased random number generation protocol whose randomness is based on the violation of the Clauser Home inequality. Non-maximally entangled state is used to maximize the Bell violation. Due to the rotational asymmetry of the quantum state, the ratio of Os to ls varies with the measurement bases. The experimental partners can then use their measurement outcomes to generate the biased random bit string. The bias of their bit string can be adjusted by altering their choices of measurement bases. When this protocol is implemented in a device-independent way, we show that the bias of the bit string can still be ensured under the collective attack.展开更多
In this paper, one introduces the polynomials R<sub>n</sub>(x) and numbers R<sub>n</sub> and derives some interesting identities related to the numbers and polynomials: R<sub>n</sub>...In this paper, one introduces the polynomials R<sub>n</sub>(x) and numbers R<sub>n</sub> and derives some interesting identities related to the numbers and polynomials: R<sub>n</sub> and R<sub>n</sub>(x). We also give relation between the Stirling numbers, the Bell numbers, the R<sub>n</sub> and R<sub>n</sub>(x).展开更多
In the existing formalism of quantum states, probability amplitudes of quantum states are complex numbers. A composition of entangled quantum states, such as a Bell state, cannot be decomposed into its constituent qua...In the existing formalism of quantum states, probability amplitudes of quantum states are complex numbers. A composition of entangled quantum states, such as a Bell state, cannot be decomposed into its constituent quantum states, implying that quantum states lose their identities when they get entangled. This is contrary to the observation that a composition of entangled quantum states decays back to its constituent quantum states. To eliminate this discrepancy, this paper introduces a new type of numbers, called virtual numbers, which produce zero upon multiplication with complex numbers. In the proposed formalism of quantum states, probability amplitudes of quantum states are general numbers made of complex and virtual numbers. A composition of entangled quantum states, such as a Bell state, can then be decomposed into its constituent quantum states, implying that quantum states retain their identities when they get entangled.展开更多
Zeno’s paradoxes are a set of philosophical problems that were first introduced by the ancient Greek philosopher Zeno of Elea. Here is the first attempt to use asymptotic approach and nonlinear concepts to address th...Zeno’s paradoxes are a set of philosophical problems that were first introduced by the ancient Greek philosopher Zeno of Elea. Here is the first attempt to use asymptotic approach and nonlinear concepts to address the paradoxes. Among the paradoxes, two of the most famous ones are Zeno’s Room Walk and Zeno’s Achilles. Lie Tsu’s pole halving dichotomy is also discussed in relation to these paradoxes. These paradoxes are first-order nonlinear phenomena, and we expressed them with the concepts of linear and nonlinear variables. In the new nonlinear concepts, variables are classified as either linear or nonlinear. Changes in linear variables are simple changes, while changes in nonlinear variables are nonlinear changes relative to their asymptotes. Continuous asymptotic curves are used to describe and derive the equations for expressing the relationship between two variables. For example, in Zeno’s Room Walk, the equations and curves for a person to walk from the initial wall towards the other wall are different from the equations and curves for a person to walk from the other wall towards the initial wall. One walk has a convex asymptotic curve with a nonlinear equation having two asymptotes, while the other walk has a concave asymptotic curve with a nonlinear equation having a finite starting number and a bottom asymptote. Interestingly, they have the same straight-line expression in a proportionality graph. The Appendix of this discussion includes an example of a second-order nonlinear phenomenon. .展开更多
文摘The purpose of this note is to establish a general representation of Hankel matrices of Bell numbers and the convoluted Bell numbers. As a special case, the results of Aigner are extended.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61378011,U1204616 and 11447143the Program for Science and Technology Innovation Talents in Universities of Henan Province under Grant No 2012HASTIT028the Program for Science and Technology Innovation Research Team in University of Henan Province under Grant No 13IRTSTHN020
文摘We propose a biased random number generation protocol whose randomness is based on the violation of the Clauser Home inequality. Non-maximally entangled state is used to maximize the Bell violation. Due to the rotational asymmetry of the quantum state, the ratio of Os to ls varies with the measurement bases. The experimental partners can then use their measurement outcomes to generate the biased random bit string. The bias of their bit string can be adjusted by altering their choices of measurement bases. When this protocol is implemented in a device-independent way, we show that the bias of the bit string can still be ensured under the collective attack.
文摘In this paper, one introduces the polynomials R<sub>n</sub>(x) and numbers R<sub>n</sub> and derives some interesting identities related to the numbers and polynomials: R<sub>n</sub> and R<sub>n</sub>(x). We also give relation between the Stirling numbers, the Bell numbers, the R<sub>n</sub> and R<sub>n</sub>(x).
文摘In the existing formalism of quantum states, probability amplitudes of quantum states are complex numbers. A composition of entangled quantum states, such as a Bell state, cannot be decomposed into its constituent quantum states, implying that quantum states lose their identities when they get entangled. This is contrary to the observation that a composition of entangled quantum states decays back to its constituent quantum states. To eliminate this discrepancy, this paper introduces a new type of numbers, called virtual numbers, which produce zero upon multiplication with complex numbers. In the proposed formalism of quantum states, probability amplitudes of quantum states are general numbers made of complex and virtual numbers. A composition of entangled quantum states, such as a Bell state, can then be decomposed into its constituent quantum states, implying that quantum states retain their identities when they get entangled.
文摘Zeno’s paradoxes are a set of philosophical problems that were first introduced by the ancient Greek philosopher Zeno of Elea. Here is the first attempt to use asymptotic approach and nonlinear concepts to address the paradoxes. Among the paradoxes, two of the most famous ones are Zeno’s Room Walk and Zeno’s Achilles. Lie Tsu’s pole halving dichotomy is also discussed in relation to these paradoxes. These paradoxes are first-order nonlinear phenomena, and we expressed them with the concepts of linear and nonlinear variables. In the new nonlinear concepts, variables are classified as either linear or nonlinear. Changes in linear variables are simple changes, while changes in nonlinear variables are nonlinear changes relative to their asymptotes. Continuous asymptotic curves are used to describe and derive the equations for expressing the relationship between two variables. For example, in Zeno’s Room Walk, the equations and curves for a person to walk from the initial wall towards the other wall are different from the equations and curves for a person to walk from the other wall towards the initial wall. One walk has a convex asymptotic curve with a nonlinear equation having two asymptotes, while the other walk has a concave asymptotic curve with a nonlinear equation having a finite starting number and a bottom asymptote. Interestingly, they have the same straight-line expression in a proportionality graph. The Appendix of this discussion includes an example of a second-order nonlinear phenomenon. .