It was showed in [Phys. Rev. Lett. 125 090401(2020)] that there exist unbounded number of independent Bobs who can share quantum nonlocality with a single Alice by performing sequentially measurements on the Bob's...It was showed in [Phys. Rev. Lett. 125 090401(2020)] that there exist unbounded number of independent Bobs who can share quantum nonlocality with a single Alice by performing sequentially measurements on the Bob's half of the maximally entangled pure two-qubit state. However, from practical perspectives, errors in entanglement generation and noises in quantum measurements will result in the decay of nonlocality in the scenario. In this paper, we analyze the persistency and termination of sharing nonlocality in the noisy scenario. We first obtain the two sufficient conditions under which there exist n independent Bobs who can share nonlocality with a single Alice under noisy measurements and the noisy initial two qubit entangled state. Analyzing the two conditions, we find that the influences on persistency under different kinds of noises can cancel each other out. Furthermore, we describe the change patterns of the maximal nonlocality-sharing number under the influence of different noises. Finally, we extend our investigation to the case of arbitrary finite-dimensional systems.展开更多
A polarized beam of energy is usually interpreted as a set of particles, all having the same polarization state. Difference in behavior between the one and the other particle is then explained by a number of counter-i...A polarized beam of energy is usually interpreted as a set of particles, all having the same polarization state. Difference in behavior between the one and the other particle is then explained by a number of counter-intuitive quantum mechanical concepts like probability distribution, superposition, entanglement and quantized spin. Alternatively, I propose that a polarized beam is composed of a set of particles with a cosine distribution of polarization angles within a polarization area. I show that Malus’ law for the intensity of a beam of polarized light can be derived in a straightforward manner from this distribution. I then show that none of the above-mentioned counter-intuitive concepts are necessary to explain particle behavior and that the ontology of particles, passing through a polarizer, can be easily and intuitively understood. I conclude by formulating some questions for follow-up research.展开更多
Using real fields instead of complex ones, it was recently claimed, that all fermions are made of pairs of coupled fields (strings) with an internal tension related to mutual attraction forces, related to Planck’s co...Using real fields instead of complex ones, it was recently claimed, that all fermions are made of pairs of coupled fields (strings) with an internal tension related to mutual attraction forces, related to Planck’s constant. Quantum mechanics is described with real fields and real operators. Schrodinger and Dirac equations then are solved. The solution to Dirac equation gives four, real, 2-vectors solutions ψ1=(U1D1)ψ2=(U2D2)ψ3=(U3D3)ψ4=(U4D4)where (ψ1,ψ4) are coupled via linear combinations to yield spin-up and spin-down fermions. Likewise, (ψ2,ψ3) are coupled via linear combinations to represent spin-up and spin-down anti-fermions. For an incoming entangled pair of fermions, the combined solution is Ψin=c1ψ1+c4ψ4where c1and c4are some hidden variables. By applying a magnetic field in +Z and +x the theoretical results of a triple Stern-Gerlach experiment are predicted correctly. Then, by repeating Bell’s and Mermin Gedanken experiment with three magnetic filters σθ, at three different inclination angles θ, the violation of Bell’s inequality is proven. It is shown that all fermions are in a mixed state of spins and the ratio between spin-up to spin-down depends on the hidden variables.展开更多
The present work investigated the efficiency of leaf reflectance indices in the identification of Capsicum annuum L. var. annuum resistant to anthracnose in the fruit. Twenty-five F<sub>5:6</sub> families ...The present work investigated the efficiency of leaf reflectance indices in the identification of Capsicum annuum L. var. annuum resistant to anthracnose in the fruit. Twenty-five F<sub>5:6</sub> families originating from contrasting parents were assessed;the parents were accession UENF 2285 (susceptible to anthracnose) and accession UENF 1381, a hot pepper resistant to anthracnose in the fruit. The experiment was carried out in an experimental field in Campos dos Goytacazes, Rio de Janeiro, Brazil, between May and October of 2021. The treatments were arranged in a randomized block design, with three replications and five plants per plot. Fifteen LRIs were estimated using a CI-710 portable mini leaf spectrometer. The assessments covered all plant growth after flowering, and a total of six assessments were performed at 15-days intervals, beginning at 35 and ending 120 days after flowering (DAFs). Analysis of variance in a split-plot scheme was performed, as were tests of mean groupings and principal components analysis (PCA). The best period for evaluating leaf reflectance indices in C. annuum var. annuum is 120 days after flowering. The leaf reflectance indices PRI, CNDVI and Ctr2 stood out as effective in distinguishing between resistant and susceptible genotypes.展开更多
We investigate the dynamical behavior of quantum steering (QS), Bell nonlocality, and entanglement in open quantum systems. We focus on a two-qubit system evolving within the framework of Kossakowski-type quantum dyna...We investigate the dynamical behavior of quantum steering (QS), Bell nonlocality, and entanglement in open quantum systems. We focus on a two-qubit system evolving within the framework of Kossakowski-type quantum dynamical semigroups. Our findings reveal that the measures of quantumness for the asymptotic states rely on the primary parameter of the quantum model. Furthermore, control over these measures can be achieved through a careful selection of these parameters. Our analysis encompasses various cases, including Bell states, Werner states, and Horodecki states, demonstrating that the asymptotic states can exhibit steering, entanglement, and Bell nonlocality. Additionally, we find that these three quantum measures of correlations can withstand the influence of the environment, maintaining their properties even over extended periods.展开更多
In this study, we explore the application of ACP (asymptotic curve based and proportionality oriented) Alpha Beta (αβ) Nonlinear Math to analyze arithmetic and radiation transmission data. Specifically, we investiga...In this study, we explore the application of ACP (asymptotic curve based and proportionality oriented) Alpha Beta (αβ) Nonlinear Math to analyze arithmetic and radiation transmission data. Specifically, we investigate the relationship between two variables. The novel approach involves collecting elementary “y” data and subsequently analyzing the asymptotic cumulative or demulative (opposite of cumulative) Y data. In part I, we examine the connection between the common linear numbers and ideal nonlinear numbers. In part II, we delve into the relationship between X-ray energy and the radiation transmission for various thin film materials. The fundamental physical law asserts that the nonlinear change in continuous variable Y is negatively proportional to the nonlinear change in continuous variable X, expressed mathematically as dα = −Kdβ. Here: dα {Y, Yu, Yb} represents the change in Y, with Yu and Yb denoting the upper and baseline asymptote of Y. dβ {X, Xu, Xb} represents the change in X, with Xu and Xb denoting the upper and baseline asymptote of X. K represents the proportionality constant or rate constant, which varies based on equation arrangement. K is the key inferential factor for describing physical phenomena.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.12271394 and 12071336)the Key Research and Development Program of Shanxi Province (Grant No.202102010101004)。
文摘It was showed in [Phys. Rev. Lett. 125 090401(2020)] that there exist unbounded number of independent Bobs who can share quantum nonlocality with a single Alice by performing sequentially measurements on the Bob's half of the maximally entangled pure two-qubit state. However, from practical perspectives, errors in entanglement generation and noises in quantum measurements will result in the decay of nonlocality in the scenario. In this paper, we analyze the persistency and termination of sharing nonlocality in the noisy scenario. We first obtain the two sufficient conditions under which there exist n independent Bobs who can share nonlocality with a single Alice under noisy measurements and the noisy initial two qubit entangled state. Analyzing the two conditions, we find that the influences on persistency under different kinds of noises can cancel each other out. Furthermore, we describe the change patterns of the maximal nonlocality-sharing number under the influence of different noises. Finally, we extend our investigation to the case of arbitrary finite-dimensional systems.
文摘A polarized beam of energy is usually interpreted as a set of particles, all having the same polarization state. Difference in behavior between the one and the other particle is then explained by a number of counter-intuitive quantum mechanical concepts like probability distribution, superposition, entanglement and quantized spin. Alternatively, I propose that a polarized beam is composed of a set of particles with a cosine distribution of polarization angles within a polarization area. I show that Malus’ law for the intensity of a beam of polarized light can be derived in a straightforward manner from this distribution. I then show that none of the above-mentioned counter-intuitive concepts are necessary to explain particle behavior and that the ontology of particles, passing through a polarizer, can be easily and intuitively understood. I conclude by formulating some questions for follow-up research.
文摘Using real fields instead of complex ones, it was recently claimed, that all fermions are made of pairs of coupled fields (strings) with an internal tension related to mutual attraction forces, related to Planck’s constant. Quantum mechanics is described with real fields and real operators. Schrodinger and Dirac equations then are solved. The solution to Dirac equation gives four, real, 2-vectors solutions ψ1=(U1D1)ψ2=(U2D2)ψ3=(U3D3)ψ4=(U4D4)where (ψ1,ψ4) are coupled via linear combinations to yield spin-up and spin-down fermions. Likewise, (ψ2,ψ3) are coupled via linear combinations to represent spin-up and spin-down anti-fermions. For an incoming entangled pair of fermions, the combined solution is Ψin=c1ψ1+c4ψ4where c1and c4are some hidden variables. By applying a magnetic field in +Z and +x the theoretical results of a triple Stern-Gerlach experiment are predicted correctly. Then, by repeating Bell’s and Mermin Gedanken experiment with three magnetic filters σθ, at three different inclination angles θ, the violation of Bell’s inequality is proven. It is shown that all fermions are in a mixed state of spins and the ratio between spin-up to spin-down depends on the hidden variables.
文摘The present work investigated the efficiency of leaf reflectance indices in the identification of Capsicum annuum L. var. annuum resistant to anthracnose in the fruit. Twenty-five F<sub>5:6</sub> families originating from contrasting parents were assessed;the parents were accession UENF 2285 (susceptible to anthracnose) and accession UENF 1381, a hot pepper resistant to anthracnose in the fruit. The experiment was carried out in an experimental field in Campos dos Goytacazes, Rio de Janeiro, Brazil, between May and October of 2021. The treatments were arranged in a randomized block design, with three replications and five plants per plot. Fifteen LRIs were estimated using a CI-710 portable mini leaf spectrometer. The assessments covered all plant growth after flowering, and a total of six assessments were performed at 15-days intervals, beginning at 35 and ending 120 days after flowering (DAFs). Analysis of variance in a split-plot scheme was performed, as were tests of mean groupings and principal components analysis (PCA). The best period for evaluating leaf reflectance indices in C. annuum var. annuum is 120 days after flowering. The leaf reflectance indices PRI, CNDVI and Ctr2 stood out as effective in distinguishing between resistant and susceptible genotypes.
文摘We investigate the dynamical behavior of quantum steering (QS), Bell nonlocality, and entanglement in open quantum systems. We focus on a two-qubit system evolving within the framework of Kossakowski-type quantum dynamical semigroups. Our findings reveal that the measures of quantumness for the asymptotic states rely on the primary parameter of the quantum model. Furthermore, control over these measures can be achieved through a careful selection of these parameters. Our analysis encompasses various cases, including Bell states, Werner states, and Horodecki states, demonstrating that the asymptotic states can exhibit steering, entanglement, and Bell nonlocality. Additionally, we find that these three quantum measures of correlations can withstand the influence of the environment, maintaining their properties even over extended periods.
文摘In this study, we explore the application of ACP (asymptotic curve based and proportionality oriented) Alpha Beta (αβ) Nonlinear Math to analyze arithmetic and radiation transmission data. Specifically, we investigate the relationship between two variables. The novel approach involves collecting elementary “y” data and subsequently analyzing the asymptotic cumulative or demulative (opposite of cumulative) Y data. In part I, we examine the connection between the common linear numbers and ideal nonlinear numbers. In part II, we delve into the relationship between X-ray energy and the radiation transmission for various thin film materials. The fundamental physical law asserts that the nonlinear change in continuous variable Y is negatively proportional to the nonlinear change in continuous variable X, expressed mathematically as dα = −Kdβ. Here: dα {Y, Yu, Yb} represents the change in Y, with Yu and Yb denoting the upper and baseline asymptote of Y. dβ {X, Xu, Xb} represents the change in X, with Xu and Xb denoting the upper and baseline asymptote of X. K represents the proportionality constant or rate constant, which varies based on equation arrangement. K is the key inferential factor for describing physical phenomena.