The amorphous Fe78Si9B13 ribbons were bend stress relaxed at various temperature well below the crystallization temperature (Tx) for different time. The effect of pre-annealing on the subsequent bend stress relaxati...The amorphous Fe78Si9B13 ribbons were bend stress relaxed at various temperature well below the crystallization temperature (Tx) for different time. The effect of pre-annealing on the subsequent bend stress relaxation was examined. The variation of the microstructure and microhardness during bend stress relaxation process was studied using X-ray diffraction (XRD), atomic force microscopy (AFM) and Vickers microhardness test,respectively. Curvature radius of the amorphous Fe78Si9B13 ribbons decreased with increase bend stress relaxation temperature and time. The microhardness of the stress relaxed specimens increased with time at 300℃ due to the forming of nanocrystals during bend stress relaxation. The pre-annealing reduced the decrease rate of the curvature radius of stress relaxed specimens.展开更多
Tool wear has an important influence on the residual stress distribution on the machined surface.Also,it will influence the fatigue life of finished workpiece. In this research,the hard turning process of hardened die...Tool wear has an important influence on the residual stress distribution on the machined surface.Also,it will influence the fatigue life of finished workpiece. In this research,the hard turning process of hardened die steel Cr12 MoV was studied by using PCBN tool with considering tool wear. Based on the numerical treatment of residual stress,the dispersion and distribution curves of different tool wear were fitted,and the influence mechanism of tool wear on the residual stress distribution of machined surface was analyzed.Based on the theory of fatigue mechanics and mathematical statistics,the mathematical model for difference of stress dispersion and fatigue life was established. The rotating and bending tests were carried out on the standard parts after cutting process for the workpiece. The influence of tool wear on fatigue life was revealed by fracture surface morphology and fatigue life study. The results provide theoretical support for control of residual stress and the fatigue property of the machined surface under the actual working conditions.展开更多
With the increasing demand for lightweight and lower fuel consumption and safety of automobile industry, lightweight materials of high strength steel (HSS) are more and more widely used. The hot stamping technology, w...With the increasing demand for lightweight and lower fuel consumption and safety of automobile industry, lightweight materials of high strength steel (HSS) are more and more widely used. The hot stamping technology, which is determined by the inherent mechanical properties of high strength steel, makes molds prone to wear failure in the harsh service environments. In this paper, a finite element model is proposed for analyzing the value and distributions law of friction shear stress of contact surface of the pin disk. Through the simulation process of sliding wear, two kinds of different cladding materials of the pin specimens including H13 and Fe65, were experimented under three different loads by using the software ABAQUS. And then the pin-on- disk wear test at elevated temperature was conducted to verify the effectiveness of the simula-tion results. The results showed that the friction shear stress of pin with iron-based cladding and H13 steel was different under different loads, but the distribution was basically the same;the normal friction shear stress increased gradually along the direction of the pin movement, and the tangential shear stress increased gradually from the center of the pin to the outside of the circle;the value of the friction shear stress of the normal joints on the contact surface was periodically fluctuating in the whole dynamic analysis step, while it was basically stable in the tangential direction.展开更多
Taking the typical face gear connection structure of the combined rotor as the research object,this paper studies the distribution rules of the contact state,contact stress and slip distance of the contact tooth surfa...Taking the typical face gear connection structure of the combined rotor as the research object,this paper studies the distribution rules of the contact state,contact stress and slip distance of the contact tooth surface of face gear under different centrifugal force and temperature conditions by using the finite element method,in order to improve the reliability of face gear connection structure.And the influence of centrifugal force and temperature on the maximum wear depth of the tooth surface is studied based on the fretting wear model proposed by McColl.Results show that:(1)The external diameter has an opening phenomenon on the contact surface of the face gear under the centrifugal effect,which reduces the load-bearing area;(2)The contact stress at the inner root of the face gear is the largest and the wear is the most serious;(3)The temperature field causes the contact surface to be thermally expanded,resulting in the large uneven deformation,and the tooth surface appears drum-shape;(4)The maximum contact stress and the maximum wear depth occur in the middle of the tooth root;(5)As the temperature increases,the maximum wear depth of the tooth surface increases significantly.Consequently,reducing temperature of the combined rotor plays an important role in effectively reducing the wear of the face gear and improving the connection life of face gear connection structure.展开更多
Carrying capacity of the casing will reduce after the casing is worn, which seriously affects the subsequent well drilling, well completion, oil extraction and well repair. A lot of researches on calculation of casing...Carrying capacity of the casing will reduce after the casing is worn, which seriously affects the subsequent well drilling, well completion, oil extraction and well repair. A lot of researches on calculation of casing wear collapse strength have been done, but few of them focus on collapsing failure mechanism, and influencing factors and law of collapse strength. So, significant difference between estimated value and actual value of collapse strength comes into being. By theoretical analysis, numerical simulation and actual test, the collapsing failure mechanism of casing wear as well as the influencing factors and laws of collapse strength are investigated, and the investigation results show that collapse of crescent casing wear belongs to 'three hinged' instability. The severely-worn position on the casing is yielded into the plastic zone first then deformed greatly, which causes the plastic instability of the whole structure. The casing wear collapse strength presents changes of exponent, power function and linear trend with the residual casing wall thickness, wear radius and axial load, respectively. When the flexibility is less than 10°/30 m, the borehole bending has less impact on casing collapse strength. Thus, the computation model for the casing wear collapsing strength is established by introducing wear radius coefficient and casing equivalent yield strength, at the same time, the model is tested. The test results show that the relative error for the computation model is less than 5%. The research results provide a basis for design of the casing string strength and evaluation of down-hole safety.展开更多
Silicon carbide and silicon nitride are recognized as phases with very good mechanical properties. Many parts of machines and mechanical devices are made of these materials. Particulate composites basing on both menti...Silicon carbide and silicon nitride are recognized as phases with very good mechanical properties. Many parts of machines and mechanical devices are made of these materials. Particulate composites basing on both mentioned phases have significant potential of properties improvement. The aim of presented work was to check the difference in wear behavior when materials surfaces were attacked by hard, loose particles in wet environment (pulp). Investigations were performed on silicon carbide, silicon nitride and two composites on their matrices. The basic performed test was the Miller Test according to ASTM Standard. The detail microstructural and mechanical characterization of investigated materials was done. Residual stress state caused by coefficients of thermal expansion mismatch was calculated using FEM approach. The second phases for composites were selected to introduce the compressive stress state into the matrix phase. Comparative studies of abrasive wear of “pure” phases and composites performed showed differences between dominating wear mechanisms. Tests results proved that the influence of the second phase presence in the materials was significant for the wear rate.展开更多
The wear rate between the rotors of a hypotrochoidal gear pump is characterized.Using the knowledge of shape design on the rotors,the contact stresses without hydrodynamic effect between the rotor teeth were evaluated...The wear rate between the rotors of a hypotrochoidal gear pump is characterized.Using the knowledge of shape design on the rotors,the contact stresses without hydrodynamic effect between the rotor teeth were evaluated through the calculation of the Hertzian contact stress.Based on the above results and the sliding velocity between the rotors,a genetic algorithm (GA) was used as an optimization technique forminimizing the wear rate proportional factor (WRPF).The result shows that the wear rate or the WRPF can be reduced considerably,e.g.approximately 12.8%,throughout the optimization using GA.展开更多
The formation mechanism and wear behavior of a gradient nanostructured(GNS) Inconel 625 alloy were investigated using SEM, TEM and ball-on-disc sliding wear tester. The results show that surface mechanical grinding tr...The formation mechanism and wear behavior of a gradient nanostructured(GNS) Inconel 625 alloy were investigated using SEM, TEM and ball-on-disc sliding wear tester. The results show that surface mechanical grinding treatment(SMGT) induced an approximately 800 μm-deep gradient microstructure, consisting of surface nano-grained,nano-laminated, nano-twined, and severely deformed layers, which resulted in a reduced gradient in micro-hardness from 6.95 GPa(topmost surface) to 2.77 GPa(coarse-grained matrix). The nano-grained layer resulted from the formation of high-density nano-twins and subsequent interaction between nano-twins and dislocations. The width and depth of the wear scar, wear loss volume, and wear rate of the SMGT-treated sample were smaller than those of untreated coarse-grained sample. Moreover, the wear mechanisms for both samples were mainly abrasive wear and adhesive wear, accompanied with mild oxidation wear. The notable wear resistance enhancement of the GNS Inconel 625 alloy was attributed to the high micro-hardness, high residual compressive stress, and high strain capacity of the GNS surface layer.展开更多
Non-carious cervical lesions (NCCLs) are defined as the loss of dental hard tissue at the cement-enamel junction. Erosion, abrasion, and attrition have been associated with this disorder. Objective: Recently, occlusal...Non-carious cervical lesions (NCCLs) are defined as the loss of dental hard tissue at the cement-enamel junction. Erosion, abrasion, and attrition have been associated with this disorder. Objective: Recently, occlusal stress causing of cervical enamel cracks (abfraction) has been considered as an additional etiology for NCCLs to facilitate the erosion and abrasion mechanisms in tooth wear. Study Design: The prevalence of NNCLs and wear facets in a population with permanent dentition in absence of any clear etiological factors related to erosion and abrasion causes is evaluated. A total 295 subjects are enrolled for this study and divided into four age groups (subjects aged 15 - 27 years, 28 - 42 years, 43 - 57 years and 58 - 75 years respectively). An overall of 6629 teeth are investigated to find NCCLs and wear facets. The occlusion is analyzed in each patient. Results: An overall of 801 teeth (12%) show NCCLs and 623 of them (78%) highlight also wear facets. The higher number of teeth with NCCLs and of these with simultaneous presence also of wear facets are found on teeth of patients of group-3 (11% of all teeth examined for group and 81% respectively) and to group-4 (24.4% of all teeth examined for group and 86.5% respectively) of remaining teeth without NCCLs (5828) only 138 (2.4%) shown wear facets. Conclusion: The results of this study held the occlusal forces as the main cause of NCCLs on teeth in presence of wear facets.展开更多
The results of the tests for a friction pair “a cylindrical specimen made of 0.45% carbon steel—a counter specimen-liner made of polytetrafluoroethyleneF4-B” during sliding friction are presented. The test results ...The results of the tests for a friction pair “a cylindrical specimen made of 0.45% carbon steel—a counter specimen-liner made of polytetrafluoroethyleneF4-B” during sliding friction are presented. The test results at different levels of contact load are analyzed using the Archard’s equation and are presented as a friction fatigue curve. The concept of the frictional stress intensity factor during sliding friction is introduced, and an expression that relates the wear rate to this factor and is close in shape to the Paris equation in fracture mechanics is proposed.展开更多
The object is to investigate the wear of an atomic force microscope (AFM) diamond tip when conducting micro/nano machining on single crystal silicon surface. The experimental research and theoretical analysis were car...The object is to investigate the wear of an atomic force microscope (AFM) diamond tip when conducting micro/nano machining on single crystal silicon surface. The experimental research and theoretical analysis were carried out on the worn tip in terms of wear rate, wear mechanism and the effect of the tip wear on micro machining process. The wear rate was calculated as 1.7(10~10mm 3/(N·m) by using a theoretical model combined with the experimental results. Through an integration of an AFM observation on the worn tip features with the FEM simulation of the stress distribution, in addition to the unit cutting force calculation on the AFM diamond tip, the wear mechanism of the AFM diamond tip was concluded as mainly chemical wear, and the wear process was also elaborated as well.展开更多
The tool flank begins to wear out as soon as cutting process proceeds. Cutting parameters such as cutting forces and cutting temperature will vary with increasing degree of flank wear. In order to reveal the relations...The tool flank begins to wear out as soon as cutting process proceeds. Cutting parameters such as cutting forces and cutting temperature will vary with increasing degree of flank wear. In order to reveal the relationship between them, the theoretical situations of cutting process were analyzed considering the tool flank wear effect. The variation rules of cutting force, residual stress and temperature distributions along with the tool flank wear were analyzed comparing with the sharp tool tip. Through FEM simulation method, affections of the tool flank wear value VB on cutting forces, residual stress and temperature distributions were analyzed. A special result in this simulation is that the thrust force is more sensitive to tool flank wear, which can be used as a recognition method of tool condition monitoring. The FEM simulation analysis result agrees well with the experimental measuring data in public literatures and some experiments made also by the authors.展开更多
Three aluminium channel sections of US standard extruded dimension are mounted as cantilevers with x-axis symmetry. The flexural bending and shear that arise with applied axial torsion are each considered theoreticall...Three aluminium channel sections of US standard extruded dimension are mounted as cantilevers with x-axis symmetry. The flexural bending and shear that arise with applied axial torsion are each considered theoretically and numerically in terms of two longitudinal axes of loading not coincident with the shear centre. In particular, the warping displacements, stiffness and stress distributions are calculated for torsion applied to longitudinal axes passing through the section’s centroid and its web centre. The stress conversions derived from each action are superimposed to reveal a net sectional stress distribution. Therein, the influence of the axis position upon the net axial and shear stress distributions is established compared to previous results for each beam when loading is referred to a flexural axis through the shear centre. Within the net stress analysis is, it is shown how the constraint to free warping presented by the end fixing modifies the axial stress. The latter can be identified with the action of a ‘bimoment’ upon each thin-walled section.展开更多
Using the single crack solution and the regular solution of plane harmonic function, the problem of Saint_Venant bending of a cracked cylinder by a transverse force was reduced to solving two sets of integral equation...Using the single crack solution and the regular solution of plane harmonic function, the problem of Saint_Venant bending of a cracked cylinder by a transverse force was reduced to solving two sets of integral equations and its general solution was then obtained. Based on the obtained solution, a method to calculate the bending center and the stress intensity factors of the cracked cylinger whose cross_section is not thin_walled, but of small torsion rigidity is proposed. Some numerical examples are given.展开更多
Through high-precision engraving,self-affine sandstone joint surfaces with various joint roughness coefficients(JRC=3.21e12.16)were replicated and the shear sliding tests under unloading normal stress were conducted r...Through high-precision engraving,self-affine sandstone joint surfaces with various joint roughness coefficients(JRC=3.21e12.16)were replicated and the shear sliding tests under unloading normal stress were conducted regarding various initial normal stresses(1e7 MPa)and numbers of shearing cycles(1 e5).The peak shear stress of fractures decreased with shear cycles due to progressively smooth surface morphologies,while increased with both JRC and initial normal stress and could be verified using the nonlinear Barton-Bandis failure criterion.The joint friction angle of fractures exponentially increased by 62.22%e64.87%with JRC while decreased by 22.1%e24.85%with shearing cycles.After unloading normal stress,the sliding initiation time of fractures increased with both JRC and initial normal stress due to more tortuous fracture morphologies and enhanced shearing resistance capacity.The surface resistance index(SRI)of fractures decreased by 4.35%e32.02%with increasing shearing cycles due to a more significant reduction of sliding initiation shear stress than that for sliding initiation normal stress,but increased by a factor of 0.41e1.64 with JRC.After sliding initiation,the shear displacement of fractures showed an increase in power function.By defining a sliding rate threshold of 5105 m/s,transition from“quasi-static”to“dynamic”sliding of fractures was identified,and the increase of sliding acceleration steepened with JRC while slowed down with shearing cycles.The normal displacement experienced a slight increase before shear sliding due to deformation recovery as the unloading stress was unloaded,and then enhanced shear dilation after sliding initiation due to climbing effects of surface asperities.Dilation was positively related to the shear sliding velocity of fractures.Wear characteristics of the fracture surfaces after shearing failure were evaluated using binary calculation,indicating an increasing shear area ratio by 45.24%e91.02%with normal stress.展开更多
A new structure design method of elastic composite cylindrical roller bearing is proposed, in which PTFE is embedded into a hollow cylindrical rolling element, according to the principle of creative combinations and t...A new structure design method of elastic composite cylindrical roller bearing is proposed, in which PTFE is embedded into a hollow cylindrical rolling element, according to the principle of creative combinations and through innovation research on cylindrical roller bearing structure. In order to systematically investigate the inner wall bending stress of the rolling element in elastic composite cylindrical roller bearing, finite element analysis on different elastic composite cylindrical rolling elements was conducted. The results show that, the bending stress of the elastic composite cylindrical rolling increases along with the increase of hollowness with the same filling material. The bending stress of the elastic composite cylindrical rolling element decreases along with the increase of the elasticity modulus of the material under the same physical dimension. Under the same load, on hollow cylindrical rolling element, the maximum bending tensile stress values of the elastic composite cylindrical rolling element after material filling at 0° and 180° are 8.2% and 9.5%, respectively, lower than those of the deep cavity hollow cylindrical rolling element. In addition, the maximum bending-compressive stress value at 90° is decreased by 6.1%.展开更多
The aim of this work is to study the stress distributions and the location of hot spots stress in the vicinity of the intersection lines of the tubular elements of the tubular TY-joints.Using the finite element models...The aim of this work is to study the stress distributions and the location of hot spots stress in the vicinity of the intersection lines of the tubular elements of the tubular TY-joints.Using the finite element models,we analyze the effects of geometrical parameters on the stress concentration factor in the case of in-plane bending and out-of-plane bending loads,around the weld toe of the tubular joints.Our results reveal the location of the maximum stress concentration factor at the heel or toe in the case of in-plane bending loads and at the saddle point in the case of out-of-plane bending loads.Six parametric equations are established and used to calculate the stress concentration factor at critical locations using the non-linear regression method.The results obtained from the finite element analysis are close to the results of the parametric equations and the experimental data from the previous work.展开更多
Optimisation of effective design parameters to reduce tooth bending stress for an automotive transmission gearbox is presented. A systematic investigation of effective design parameters for optimum design of a five-sp...Optimisation of effective design parameters to reduce tooth bending stress for an automotive transmission gearbox is presented. A systematic investigation of effective design parameters for optimum design of a five-speed gearbox is studied. For this aim contact ratio effect on tooth bending stress by the changing of contact ratio with respect to pressure angle is analysed. Additionally, profile modification effects on tooth bending stress are presented. During the optimisation, the tooth bending stress is considered as the objective function, and all the geometric design parameters such as module, teeth number etc. are optimised under two different constraints, including tooth contact stress and constant gear centre distance. It can be concluded that higher the contact ratio results in a reduced tooth bending stress, while higher the pressure angle caused an increase in tooth bending stress and contact stress, since decreases in the contact ratio. In addition, application of positive profile modification on tooth reduces tooth bending stress. All of the obtained optimum solutions satisfy all constraints.展开更多
Using the single crack solution and the regular solution elf plane harmonic function, the problem of Saint-Venant bending of a cracked cylinder by a transverse force was reduced to solving two sets of integral equatio...Using the single crack solution and the regular solution elf plane harmonic function, the problem of Saint-Venant bending of a cracked cylinder by a transverse force was reduced to solving two sets of integral equations and its general solution was then obtained. Based on the obtained solution, a method to calculate the bending center and the stress intensity factors of the cracked cylinger whose cross-section is not thin-walled, but of small torsion rigidity is proposed. Some numerical examples are given.展开更多
On the basis about studying free bending for box beam with rectangular cross_section filled by honeycomb core,supplementary displacements and stresses of restrained bending for such beam were analyzed.The hypothesis f...On the basis about studying free bending for box beam with rectangular cross_section filled by honeycomb core,supplementary displacements and stresses of restrained bending for such beam were analyzed.The hypothesis for separated variables was adopted to solve displacement.According to this,three aspect equations of geometrical,physical and balance were obtained.With Galerkin's method,it is summed up as two_order ordinary differential equations with the attenuation character.Analysis makes clear that attenuation speed of stress is concerned with a big load or a small one,geometric dimensions of cross_section of beam,and physical parameter of material.展开更多
文摘The amorphous Fe78Si9B13 ribbons were bend stress relaxed at various temperature well below the crystallization temperature (Tx) for different time. The effect of pre-annealing on the subsequent bend stress relaxation was examined. The variation of the microstructure and microhardness during bend stress relaxation process was studied using X-ray diffraction (XRD), atomic force microscopy (AFM) and Vickers microhardness test,respectively. Curvature radius of the amorphous Fe78Si9B13 ribbons decreased with increase bend stress relaxation temperature and time. The microhardness of the stress relaxed specimens increased with time at 300℃ due to the forming of nanocrystals during bend stress relaxation. The pre-annealing reduced the decrease rate of the curvature radius of stress relaxed specimens.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51575147)the Science Funds for the Young Innovative Talents of HUST(Grant No.201507)
文摘Tool wear has an important influence on the residual stress distribution on the machined surface.Also,it will influence the fatigue life of finished workpiece. In this research,the hard turning process of hardened die steel Cr12 MoV was studied by using PCBN tool with considering tool wear. Based on the numerical treatment of residual stress,the dispersion and distribution curves of different tool wear were fitted,and the influence mechanism of tool wear on the residual stress distribution of machined surface was analyzed.Based on the theory of fatigue mechanics and mathematical statistics,the mathematical model for difference of stress dispersion and fatigue life was established. The rotating and bending tests were carried out on the standard parts after cutting process for the workpiece. The influence of tool wear on fatigue life was revealed by fracture surface morphology and fatigue life study. The results provide theoretical support for control of residual stress and the fatigue property of the machined surface under the actual working conditions.
文摘With the increasing demand for lightweight and lower fuel consumption and safety of automobile industry, lightweight materials of high strength steel (HSS) are more and more widely used. The hot stamping technology, which is determined by the inherent mechanical properties of high strength steel, makes molds prone to wear failure in the harsh service environments. In this paper, a finite element model is proposed for analyzing the value and distributions law of friction shear stress of contact surface of the pin disk. Through the simulation process of sliding wear, two kinds of different cladding materials of the pin specimens including H13 and Fe65, were experimented under three different loads by using the software ABAQUS. And then the pin-on- disk wear test at elevated temperature was conducted to verify the effectiveness of the simula-tion results. The results showed that the friction shear stress of pin with iron-based cladding and H13 steel was different under different loads, but the distribution was basically the same;the normal friction shear stress increased gradually along the direction of the pin movement, and the tangential shear stress increased gradually from the center of the pin to the outside of the circle;the value of the friction shear stress of the normal joints on the contact surface was periodically fluctuating in the whole dynamic analysis step, while it was basically stable in the tangential direction.
基金supported by the National Natural Science of China(No.11872288)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2019JM-219)。
文摘Taking the typical face gear connection structure of the combined rotor as the research object,this paper studies the distribution rules of the contact state,contact stress and slip distance of the contact tooth surface of face gear under different centrifugal force and temperature conditions by using the finite element method,in order to improve the reliability of face gear connection structure.And the influence of centrifugal force and temperature on the maximum wear depth of the tooth surface is studied based on the fretting wear model proposed by McColl.Results show that:(1)The external diameter has an opening phenomenon on the contact surface of the face gear under the centrifugal effect,which reduces the load-bearing area;(2)The contact stress at the inner root of the face gear is the largest and the wear is the most serious;(3)The temperature field causes the contact surface to be thermally expanded,resulting in the large uneven deformation,and the tooth surface appears drum-shape;(4)The maximum contact stress and the maximum wear depth occur in the middle of the tooth root;(5)As the temperature increases,the maximum wear depth of the tooth surface increases significantly.Consequently,reducing temperature of the combined rotor plays an important role in effectively reducing the wear of the face gear and improving the connection life of face gear connection structure.
文摘Carrying capacity of the casing will reduce after the casing is worn, which seriously affects the subsequent well drilling, well completion, oil extraction and well repair. A lot of researches on calculation of casing wear collapse strength have been done, but few of them focus on collapsing failure mechanism, and influencing factors and law of collapse strength. So, significant difference between estimated value and actual value of collapse strength comes into being. By theoretical analysis, numerical simulation and actual test, the collapsing failure mechanism of casing wear as well as the influencing factors and laws of collapse strength are investigated, and the investigation results show that collapse of crescent casing wear belongs to 'three hinged' instability. The severely-worn position on the casing is yielded into the plastic zone first then deformed greatly, which causes the plastic instability of the whole structure. The casing wear collapse strength presents changes of exponent, power function and linear trend with the residual casing wall thickness, wear radius and axial load, respectively. When the flexibility is less than 10°/30 m, the borehole bending has less impact on casing collapse strength. Thus, the computation model for the casing wear collapsing strength is established by introducing wear radius coefficient and casing equivalent yield strength, at the same time, the model is tested. The test results show that the relative error for the computation model is less than 5%. The research results provide a basis for design of the casing string strength and evaluation of down-hole safety.
基金The work was financially supported by the Polish State National Centre for Research and Development under Programme INNOTECH-K2/IN2/16/181920/NCBR/13.
文摘Silicon carbide and silicon nitride are recognized as phases with very good mechanical properties. Many parts of machines and mechanical devices are made of these materials. Particulate composites basing on both mentioned phases have significant potential of properties improvement. The aim of presented work was to check the difference in wear behavior when materials surfaces were attacked by hard, loose particles in wet environment (pulp). Investigations were performed on silicon carbide, silicon nitride and two composites on their matrices. The basic performed test was the Miller Test according to ASTM Standard. The detail microstructural and mechanical characterization of investigated materials was done. Residual stress state caused by coefficients of thermal expansion mismatch was calculated using FEM approach. The second phases for composites were selected to introduce the compressive stress state into the matrix phase. Comparative studies of abrasive wear of “pure” phases and composites performed showed differences between dominating wear mechanisms. Tests results proved that the influence of the second phase presence in the materials was significant for the wear rate.
基金supported by Changwon National University in 2010,Korea
文摘The wear rate between the rotors of a hypotrochoidal gear pump is characterized.Using the knowledge of shape design on the rotors,the contact stresses without hydrodynamic effect between the rotor teeth were evaluated through the calculation of the Hertzian contact stress.Based on the above results and the sliding velocity between the rotors,a genetic algorithm (GA) was used as an optimization technique forminimizing the wear rate proportional factor (WRPF).The result shows that the wear rate or the WRPF can be reduced considerably,e.g.approximately 12.8%,throughout the optimization using GA.
基金financially supported by the National Key Research and Development Program of China (No. 2017YFA07007003)the National Natural Science Foundation of China (No. 51661019)+4 种基金the Program for Major Projects of Science and Technology in Gansu Province, China (No. 145RTSA004)the Hongliu First-class Discipline Construction Plan of Lanzhou University of Technology, Chinathe Incubation Program of Excellent Doctoral Dissertation, Lanzhou University of Technology, Chinathe Lanzhou University of Technology Excellent Students Studying Abroad Learning Exchange Fundthe State Key Laboratory of Cooperation and Exchange Fund。
文摘The formation mechanism and wear behavior of a gradient nanostructured(GNS) Inconel 625 alloy were investigated using SEM, TEM and ball-on-disc sliding wear tester. The results show that surface mechanical grinding treatment(SMGT) induced an approximately 800 μm-deep gradient microstructure, consisting of surface nano-grained,nano-laminated, nano-twined, and severely deformed layers, which resulted in a reduced gradient in micro-hardness from 6.95 GPa(topmost surface) to 2.77 GPa(coarse-grained matrix). The nano-grained layer resulted from the formation of high-density nano-twins and subsequent interaction between nano-twins and dislocations. The width and depth of the wear scar, wear loss volume, and wear rate of the SMGT-treated sample were smaller than those of untreated coarse-grained sample. Moreover, the wear mechanisms for both samples were mainly abrasive wear and adhesive wear, accompanied with mild oxidation wear. The notable wear resistance enhancement of the GNS Inconel 625 alloy was attributed to the high micro-hardness, high residual compressive stress, and high strain capacity of the GNS surface layer.
文摘Non-carious cervical lesions (NCCLs) are defined as the loss of dental hard tissue at the cement-enamel junction. Erosion, abrasion, and attrition have been associated with this disorder. Objective: Recently, occlusal stress causing of cervical enamel cracks (abfraction) has been considered as an additional etiology for NCCLs to facilitate the erosion and abrasion mechanisms in tooth wear. Study Design: The prevalence of NNCLs and wear facets in a population with permanent dentition in absence of any clear etiological factors related to erosion and abrasion causes is evaluated. A total 295 subjects are enrolled for this study and divided into four age groups (subjects aged 15 - 27 years, 28 - 42 years, 43 - 57 years and 58 - 75 years respectively). An overall of 6629 teeth are investigated to find NCCLs and wear facets. The occlusion is analyzed in each patient. Results: An overall of 801 teeth (12%) show NCCLs and 623 of them (78%) highlight also wear facets. The higher number of teeth with NCCLs and of these with simultaneous presence also of wear facets are found on teeth of patients of group-3 (11% of all teeth examined for group and 81% respectively) and to group-4 (24.4% of all teeth examined for group and 86.5% respectively) of remaining teeth without NCCLs (5828) only 138 (2.4%) shown wear facets. Conclusion: The results of this study held the occlusal forces as the main cause of NCCLs on teeth in presence of wear facets.
文摘The results of the tests for a friction pair “a cylindrical specimen made of 0.45% carbon steel—a counter specimen-liner made of polytetrafluoroethyleneF4-B” during sliding friction are presented. The test results at different levels of contact load are analyzed using the Archard’s equation and are presented as a friction fatigue curve. The concept of the frictional stress intensity factor during sliding friction is introduced, and an expression that relates the wear rate to this factor and is close in shape to the Paris equation in fracture mechanics is proposed.
文摘The object is to investigate the wear of an atomic force microscope (AFM) diamond tip when conducting micro/nano machining on single crystal silicon surface. The experimental research and theoretical analysis were carried out on the worn tip in terms of wear rate, wear mechanism and the effect of the tip wear on micro machining process. The wear rate was calculated as 1.7(10~10mm 3/(N·m) by using a theoretical model combined with the experimental results. Through an integration of an AFM observation on the worn tip features with the FEM simulation of the stress distribution, in addition to the unit cutting force calculation on the AFM diamond tip, the wear mechanism of the AFM diamond tip was concluded as mainly chemical wear, and the wear process was also elaborated as well.
基金Project(50435020) supported by the National Natural Science Foundation of China
文摘The tool flank begins to wear out as soon as cutting process proceeds. Cutting parameters such as cutting forces and cutting temperature will vary with increasing degree of flank wear. In order to reveal the relationship between them, the theoretical situations of cutting process were analyzed considering the tool flank wear effect. The variation rules of cutting force, residual stress and temperature distributions along with the tool flank wear were analyzed comparing with the sharp tool tip. Through FEM simulation method, affections of the tool flank wear value VB on cutting forces, residual stress and temperature distributions were analyzed. A special result in this simulation is that the thrust force is more sensitive to tool flank wear, which can be used as a recognition method of tool condition monitoring. The FEM simulation analysis result agrees well with the experimental measuring data in public literatures and some experiments made also by the authors.
文摘Three aluminium channel sections of US standard extruded dimension are mounted as cantilevers with x-axis symmetry. The flexural bending and shear that arise with applied axial torsion are each considered theoretically and numerically in terms of two longitudinal axes of loading not coincident with the shear centre. In particular, the warping displacements, stiffness and stress distributions are calculated for torsion applied to longitudinal axes passing through the section’s centroid and its web centre. The stress conversions derived from each action are superimposed to reveal a net sectional stress distribution. Therein, the influence of the axis position upon the net axial and shear stress distributions is established compared to previous results for each beam when loading is referred to a flexural axis through the shear centre. Within the net stress analysis is, it is shown how the constraint to free warping presented by the end fixing modifies the axial stress. The latter can be identified with the action of a ‘bimoment’ upon each thin-walled section.
文摘Using the single crack solution and the regular solution of plane harmonic function, the problem of Saint_Venant bending of a cracked cylinder by a transverse force was reduced to solving two sets of integral equations and its general solution was then obtained. Based on the obtained solution, a method to calculate the bending center and the stress intensity factors of the cracked cylinger whose cross_section is not thin_walled, but of small torsion rigidity is proposed. Some numerical examples are given.
基金support from the National Natural Science Foundation of China(Grant Nos.52174092 and 52104125)the Fundamental Research Funds for the Central Universities,China(Grant No.2022YCPY0202)is gratefully acknowledged.
文摘Through high-precision engraving,self-affine sandstone joint surfaces with various joint roughness coefficients(JRC=3.21e12.16)were replicated and the shear sliding tests under unloading normal stress were conducted regarding various initial normal stresses(1e7 MPa)and numbers of shearing cycles(1 e5).The peak shear stress of fractures decreased with shear cycles due to progressively smooth surface morphologies,while increased with both JRC and initial normal stress and could be verified using the nonlinear Barton-Bandis failure criterion.The joint friction angle of fractures exponentially increased by 62.22%e64.87%with JRC while decreased by 22.1%e24.85%with shearing cycles.After unloading normal stress,the sliding initiation time of fractures increased with both JRC and initial normal stress due to more tortuous fracture morphologies and enhanced shearing resistance capacity.The surface resistance index(SRI)of fractures decreased by 4.35%e32.02%with increasing shearing cycles due to a more significant reduction of sliding initiation shear stress than that for sliding initiation normal stress,but increased by a factor of 0.41e1.64 with JRC.After sliding initiation,the shear displacement of fractures showed an increase in power function.By defining a sliding rate threshold of 5105 m/s,transition from“quasi-static”to“dynamic”sliding of fractures was identified,and the increase of sliding acceleration steepened with JRC while slowed down with shearing cycles.The normal displacement experienced a slight increase before shear sliding due to deformation recovery as the unloading stress was unloaded,and then enhanced shear dilation after sliding initiation due to climbing effects of surface asperities.Dilation was positively related to the shear sliding velocity of fractures.Wear characteristics of the fracture surfaces after shearing failure were evaluated using binary calculation,indicating an increasing shear area ratio by 45.24%e91.02%with normal stress.
基金Project(51175168)supported by the National Natural Science Foundation of ChinaProjects(2011GK3148,2012GK3092)supported by Science and Technology Program of Hunan Province,China
文摘A new structure design method of elastic composite cylindrical roller bearing is proposed, in which PTFE is embedded into a hollow cylindrical rolling element, according to the principle of creative combinations and through innovation research on cylindrical roller bearing structure. In order to systematically investigate the inner wall bending stress of the rolling element in elastic composite cylindrical roller bearing, finite element analysis on different elastic composite cylindrical rolling elements was conducted. The results show that, the bending stress of the elastic composite cylindrical rolling increases along with the increase of hollowness with the same filling material. The bending stress of the elastic composite cylindrical rolling element decreases along with the increase of the elasticity modulus of the material under the same physical dimension. Under the same load, on hollow cylindrical rolling element, the maximum bending tensile stress values of the elastic composite cylindrical rolling element after material filling at 0° and 180° are 8.2% and 9.5%, respectively, lower than those of the deep cavity hollow cylindrical rolling element. In addition, the maximum bending-compressive stress value at 90° is decreased by 6.1%.
文摘The aim of this work is to study the stress distributions and the location of hot spots stress in the vicinity of the intersection lines of the tubular elements of the tubular TY-joints.Using the finite element models,we analyze the effects of geometrical parameters on the stress concentration factor in the case of in-plane bending and out-of-plane bending loads,around the weld toe of the tubular joints.Our results reveal the location of the maximum stress concentration factor at the heel or toe in the case of in-plane bending loads and at the saddle point in the case of out-of-plane bending loads.Six parametric equations are established and used to calculate the stress concentration factor at critical locations using the non-linear regression method.The results obtained from the finite element analysis are close to the results of the parametric equations and the experimental data from the previous work.
文摘Optimisation of effective design parameters to reduce tooth bending stress for an automotive transmission gearbox is presented. A systematic investigation of effective design parameters for optimum design of a five-speed gearbox is studied. For this aim contact ratio effect on tooth bending stress by the changing of contact ratio with respect to pressure angle is analysed. Additionally, profile modification effects on tooth bending stress are presented. During the optimisation, the tooth bending stress is considered as the objective function, and all the geometric design parameters such as module, teeth number etc. are optimised under two different constraints, including tooth contact stress and constant gear centre distance. It can be concluded that higher the contact ratio results in a reduced tooth bending stress, while higher the pressure angle caused an increase in tooth bending stress and contact stress, since decreases in the contact ratio. In addition, application of positive profile modification on tooth reduces tooth bending stress. All of the obtained optimum solutions satisfy all constraints.
文摘Using the single crack solution and the regular solution elf plane harmonic function, the problem of Saint-Venant bending of a cracked cylinder by a transverse force was reduced to solving two sets of integral equations and its general solution was then obtained. Based on the obtained solution, a method to calculate the bending center and the stress intensity factors of the cracked cylinger whose cross-section is not thin-walled, but of small torsion rigidity is proposed. Some numerical examples are given.
文摘On the basis about studying free bending for box beam with rectangular cross_section filled by honeycomb core,supplementary displacements and stresses of restrained bending for such beam were analyzed.The hypothesis for separated variables was adopted to solve displacement.According to this,three aspect equations of geometrical,physical and balance were obtained.With Galerkin's method,it is summed up as two_order ordinary differential equations with the attenuation character.Analysis makes clear that attenuation speed of stress is concerned with a big load or a small one,geometric dimensions of cross_section of beam,and physical parameter of material.