In this paper,we find the solutions for fractional potential Korteweg-de Vries(p-KdV)and Benjamin equations using q-homotopy analysis transform method(q-HATM).The considered method is the mixture of q-homotopy analysi...In this paper,we find the solutions for fractional potential Korteweg-de Vries(p-KdV)and Benjamin equations using q-homotopy analysis transform method(q-HATM).The considered method is the mixture of q-homotopy analysis method and Laplace transform,and the Caputo fractional operator is considered in the present investigation.The projected solution procedure manipulates and controls the obtained results in a large admissible domain.Further,it offers a simple algorithm to adjust the convergence province of the obtained solution.To validate the q-HATM is accurate and reliable,the numerical simulations have been conducted for both equations and the outcomes are revealed through the plots and tables.Comparison between the obtained solutions with the exact solutions exhibits that,the considered method is efficient and effective in solving nonlinear problems associated with science and technology.展开更多
This paper is intended as an attempt to set up the global smoothing for the periodic Benjamin equation. It is shown that for Hs(T) initial data with 8 〉 -1/2 and for any s 〈 s1〈 min{s + 1,3s + 1}, the differenc...This paper is intended as an attempt to set up the global smoothing for the periodic Benjamin equation. It is shown that for Hs(T) initial data with 8 〉 -1/2 and for any s 〈 s1〈 min{s + 1,3s + 1}, the difference of the evolution with the linear evolution is in Hs1 (T) for all times, with at most polynomial growing HS1 norm. Unlike Korteweg-de Vries (KdV) equation, there are less symmetries of the Benjamin system, especially for the resonant function. The new ingredient is that we need to deal with some new difficulties that are caused by the lack of symmetries.展开更多
By using an improved projective Riccati equation method, this paper obtains several types of exact travelling wave solutions to the Benjamin Ono equation which include multiple soliton solutions, periodic soliton solu...By using an improved projective Riccati equation method, this paper obtains several types of exact travelling wave solutions to the Benjamin Ono equation which include multiple soliton solutions, periodic soliton solutions and Weierstrass function solutions. Some of them are found for the first time. The method can be applied to other nonlinear evolution equations in mathematical physics.展开更多
For many control systems in real life, impulses and delays are intrinsic phenomena that do not modify their controllability. So we conjecture that under certain conditions the abrupt changes and delays as perturbation...For many control systems in real life, impulses and delays are intrinsic phenomena that do not modify their controllability. So we conjecture that under certain conditions the abrupt changes and delays as perturbations of a system do not destroy its controllability. There are many practical examples of impulsive control systems with delays, such as a chemical reactor system, a financial system with two state variables, the amount of money in a market and the savings rate of a central bank, and the growth of a population diffusing throughout its habitat modeled by a reaction-diffusion equation. In this paper we apply the Rothe’s Fixed Point Theorem to prove the interior approximate controllability of the following Benjamin Bona-Mohany(BBM) type equation with impulses and delay where and are constants, Ω is a domain in , ω is an open non-empty subset of Ω , denotes the characteristic function of the set ω , the distributed control , are continuous functions and the nonlinear functions are smooth enough functions satisfying some additional conditions.展开更多
In this paper, the modified Kudryashov method is employed to find the traveling wave solutions of two well-known space-time fractional partial differential equations, namely the Zakharov Kuznetshov Benjamin Bona Mahon...In this paper, the modified Kudryashov method is employed to find the traveling wave solutions of two well-known space-time fractional partial differential equations, namely the Zakharov Kuznetshov Benjamin Bona Mahony equation and Kolmogorov Petrovskii Piskunov equation, and as a helping tool, the sense of modified Riemann-Liouville derivative is also used. The propagation properties of obtained solutions are investigated where the graphical representations and justifications of the results are done by mathematical software Maple.展开更多
文摘In this paper,we find the solutions for fractional potential Korteweg-de Vries(p-KdV)and Benjamin equations using q-homotopy analysis transform method(q-HATM).The considered method is the mixture of q-homotopy analysis method and Laplace transform,and the Caputo fractional operator is considered in the present investigation.The projected solution procedure manipulates and controls the obtained results in a large admissible domain.Further,it offers a simple algorithm to adjust the convergence province of the obtained solution.To validate the q-HATM is accurate and reliable,the numerical simulations have been conducted for both equations and the outcomes are revealed through the plots and tables.Comparison between the obtained solutions with the exact solutions exhibits that,the considered method is efficient and effective in solving nonlinear problems associated with science and technology.
基金supported by National Natural Science Foundation of China(Grant Nos.11171026 and 11271175)National Natural Science Foundation of Shandong Province(Grant No.ZR2012AQ026)
文摘This paper is intended as an attempt to set up the global smoothing for the periodic Benjamin equation. It is shown that for Hs(T) initial data with 8 〉 -1/2 and for any s 〈 s1〈 min{s + 1,3s + 1}, the difference of the evolution with the linear evolution is in Hs1 (T) for all times, with at most polynomial growing HS1 norm. Unlike Korteweg-de Vries (KdV) equation, there are less symmetries of the Benjamin system, especially for the resonant function. The new ingredient is that we need to deal with some new difficulties that are caused by the lack of symmetries.
文摘By using an improved projective Riccati equation method, this paper obtains several types of exact travelling wave solutions to the Benjamin Ono equation which include multiple soliton solutions, periodic soliton solutions and Weierstrass function solutions. Some of them are found for the first time. The method can be applied to other nonlinear evolution equations in mathematical physics.
文摘For many control systems in real life, impulses and delays are intrinsic phenomena that do not modify their controllability. So we conjecture that under certain conditions the abrupt changes and delays as perturbations of a system do not destroy its controllability. There are many practical examples of impulsive control systems with delays, such as a chemical reactor system, a financial system with two state variables, the amount of money in a market and the savings rate of a central bank, and the growth of a population diffusing throughout its habitat modeled by a reaction-diffusion equation. In this paper we apply the Rothe’s Fixed Point Theorem to prove the interior approximate controllability of the following Benjamin Bona-Mohany(BBM) type equation with impulses and delay where and are constants, Ω is a domain in , ω is an open non-empty subset of Ω , denotes the characteristic function of the set ω , the distributed control , are continuous functions and the nonlinear functions are smooth enough functions satisfying some additional conditions.
文摘In this paper, the modified Kudryashov method is employed to find the traveling wave solutions of two well-known space-time fractional partial differential equations, namely the Zakharov Kuznetshov Benjamin Bona Mahony equation and Kolmogorov Petrovskii Piskunov equation, and as a helping tool, the sense of modified Riemann-Liouville derivative is also used. The propagation properties of obtained solutions are investigated where the graphical representations and justifications of the results are done by mathematical software Maple.