In this paper, we prove the existence of the pullback attractor for the nonautonomous Benjamin-Bona-Mahony equations in H2 by establishing the pullback uniformly asymptotical compactness.
New two-component vector breather solution of the modified Benjamin-Bona-Mahony(MBBM)equation is considered.Using the generalized perturbation reduction method,the MBBM equation is reduced to the coupled nonlinear Sch...New two-component vector breather solution of the modified Benjamin-Bona-Mahony(MBBM)equation is considered.Using the generalized perturbation reduction method,the MBBM equation is reduced to the coupled nonlinear Schr¨odinger equations for auxiliary functions.Explicit analytical expressions for the profile and parameters of the vector breather oscillating with the sum and difference of the frequencies and wavenumbers are presented.The two-component vector breather and single-component scalar breather of the MBBM equation is compared.展开更多
In this paper, a spectral method to analyze the generalized Benjamin Bona Mahony equations is used. The existence and uniqueness of global smooth solution of these equations are proved. The large time error estimati...In this paper, a spectral method to analyze the generalized Benjamin Bona Mahony equations is used. The existence and uniqueness of global smooth solution of these equations are proved. The large time error estimation between the spectral approximate solution and the exact solution is obtained.展开更多
In this paper,we show the existence of pullback attractors for the nonautonomous Benjamin-Bona-Mahony equations by establishing the pullback uniform asymptotically compactness.
In this paper, the ansatze method is implemented to study the exact solutions for the modified Benjamin-Bona-Mahony equation (mBBM). The singular-shaped traveling wave solution, the Bell-shape is traveling wave soluti...In this paper, the ansatze method is implemented to study the exact solutions for the modified Benjamin-Bona-Mahony equation (mBBM). The singular-shaped traveling wave solution, the Bell-shape is traveling wave solution, the kink-shaped traveling wave solution and the periodic traveling wave solution is obtained. With the assist of computational software MATLAB, the graphical exemplifications of solutions are illustrated of the two-dimension (2D) and three-dimension (3D) plots.展开更多
In this article, the application of variational homotopy perturbation method is applied to solve Benjamin-Bona-Mahony equation. Then, we obtain the numerical solution of BBM equation using the initial condition. Compa...In this article, the application of variational homotopy perturbation method is applied to solve Benjamin-Bona-Mahony equation. Then, we obtain the numerical solution of BBM equation using the initial condition. Comparison with Adomian’s decomposition method, homotopy perturbation method, and with the exact solution shows that VHPM is more effective and accurate than ADM and HPM, and is reliable and manageable for this type of equation.展开更多
In this paper, we obtained a kind of lump solutions of the Kadomtsev-Petviashvili-Benjamin-Bona-Mahony (KP-BBM) equation with the assistance of Mathematica. Some contour plots with different determinant values are seq...In this paper, we obtained a kind of lump solutions of the Kadomtsev-Petviashvili-Benjamin-Bona-Mahony (KP-BBM) equation with the assistance of Mathematica. Some contour plots with different determinant values are sequentially made to show that the corresponding lump solutions tend to zero when x2+y2→∞. Particularly, lump solutions with specific values of the include parameters are plotted, as illustrative examples. Finally, a combination of stripe soliton and lump soliton is discussed to the KP-BBM equation, in which such a solution presents two different interesting phenomena: lump-kink and lump-soliton. Simultaneously, breather rational soliton solutions are displayed.展开更多
In order to get the traveling wave solutions of the Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZK-BBM) equation, it is reduced to an ordinary differential equation (ODE) under the travelling wave transformation first. T...In order to get the traveling wave solutions of the Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZK-BBM) equation, it is reduced to an ordinary differential equation (ODE) under the travelling wave transformation first. Then complete discrimination system for polynomial is applied to the ZK-BBM equation. The traveling wave solutions of the equation can be obtained.展开更多
For many control systems in real life, impulses and delays are intrinsic phenomena that do not modify their controllability. So we conjecture that under certain conditions the abrupt changes and delays as perturbation...For many control systems in real life, impulses and delays are intrinsic phenomena that do not modify their controllability. So we conjecture that under certain conditions the abrupt changes and delays as perturbations of a system do not destroy its controllability. There are many practical examples of impulsive control systems with delays, such as a chemical reactor system, a financial system with two state variables, the amount of money in a market and the savings rate of a central bank, and the growth of a population diffusing throughout its habitat modeled by a reaction-diffusion equation. In this paper we apply the Rothe’s Fixed Point Theorem to prove the interior approximate controllability of the following Benjamin Bona-Mohany(BBM) type equation with impulses and delay where and are constants, Ω is a domain in , ω is an open non-empty subset of Ω , denotes the characteristic function of the set ω , the distributed control , are continuous functions and the nonlinear functions are smooth enough functions satisfying some additional conditions.展开更多
This paper deals with quasilinear elliptic equations of singular growth like-Δu-uΔ(u^(2))=a(x)u^(-1).We establish the existence of positive solutions for general a(x)∈L^(p)(Ω),p>2,whereΩis a bounded domain inℝ...This paper deals with quasilinear elliptic equations of singular growth like-Δu-uΔ(u^(2))=a(x)u^(-1).We establish the existence of positive solutions for general a(x)∈L^(p)(Ω),p>2,whereΩis a bounded domain inℝ^(N)with N≥1.展开更多
In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with ...In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.展开更多
In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,t...In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,the original Boussinesq system is transformed into an equivalent one.Then we discretize it using the second-order backward di erentiation formula(BDF2)and Crank-Nicolson(CN)to obtain two second-order time-advanced schemes.In both numerical schemes,a pressure-correction method is employed to decouple the velocity and pressure.These two schemes possess the desired property that they can be fully decoupled with satisfying unconditional stability.We rigorously prove both the unconditional stability and unique solvability of the discrete schemes.Furthermore,we provide detailed implementations of the decoupling procedures.Finally,various 2D numerical simulations are performed to verify the accuracy and energy stability of the proposed schemes.展开更多
The study of the hydrodynamic limit of the Boltzmann equation with physical boundary is a challenging problem due to the appearance of the viscous and Knudsen boundary layers.In this paper,the hydrodynamic limit from ...The study of the hydrodynamic limit of the Boltzmann equation with physical boundary is a challenging problem due to the appearance of the viscous and Knudsen boundary layers.In this paper,the hydrodynamic limit from the Boltzmann equation with the specular reflection boundary condition to the incompressible Euler equations in a channel is investigated.Based on the multi-scaled Hilbert expansion,the equations with boundary conditions and compatibility conditions for interior solutions,and viscous and Knudsen boundary layers are derived under different scaling,respectively.Then,some uniform estimates for the interior solutions,and viscous and Knudsen boundary layers are established.With the help of the L2-L∞ framework and the uniform estimates obtained above,the solutions to the Boltzmann equation are constructed by the truncated Hilbert expansion with multiscales,and hence the hydrodynamic limit in the incompressible Euler level is justified.展开更多
The third-order flow Gerdjikov–Ivanov(TOFGI)equation is studied,and the Darboux transformation(DT)is used to obtain the determinant expression of the solution of this equation.On this basis,the soliton solution,ratio...The third-order flow Gerdjikov–Ivanov(TOFGI)equation is studied,and the Darboux transformation(DT)is used to obtain the determinant expression of the solution of this equation.On this basis,the soliton solution,rational solution,positon solution,and breather solution of the TOFGI equation are obtained by taking zero seed solution and non-zero seed solution.The exact solutions and dynamic properties of the Gerdjikov–Ivanov(GI)equation and the TOFGI equation are compared in detail under the same conditions,and it is found that there are some differences in the velocities and trajectories of the solutions of the two equations.展开更多
Loess-mudstone landslides are common in the Loess Plateau.Investigations into the mechanical theory of loess-mudstone landslides have become a challenging undertaking due to the distinctive interfacial properties of l...Loess-mudstone landslides are common in the Loess Plateau.Investigations into the mechanical theory of loess-mudstone landslides have become a challenging undertaking due to the distinctive interfacial properties of loess-mudstone and the unique water sensitivity characteristics of mudstone.Hence,it is imperative to develop innovative mechanical models and mathematical equations specifically tailored to loess-mudstone landslides.In this study,we analyze the fracture mechanism of the loess-mudstone sliding zone using plastic fracture mechanics and develop a unique fracture yield model.To calculate the energy release rate during the expansion of the loess-mudstone interface tip region,the shear fracture energy G is applied,which reflects both the yield failure criterion and the fracture failure criterion.To better understand the instability mechanism of loess-mudstone landslides,equilibrium equations based on G are established for tractive,compressive,and tensile loess-mudstone landslides.Based on the equilibrium equation,the critical length Lc of the sliding zone can be used for the safety evaluation of loess-mudstone landslides.In this way,this study proposes a new method for determining the failure mechanism and equilibrium equation of loessmudstone landslides,which resolves their starting mechanism,mechanical equilibrium equations,and safety evaluation indicators,thus justifying the scientific significance and practical value of this research.展开更多
The focusing modified Korteweg-de Vries(mKdV)equation with multiple high-order poles under the nonzero boundary conditions is first investigated via developing a Riemann-Hilbert(RH)approach.We begin with the asymptoti...The focusing modified Korteweg-de Vries(mKdV)equation with multiple high-order poles under the nonzero boundary conditions is first investigated via developing a Riemann-Hilbert(RH)approach.We begin with the asymptotic property,symmetry and analyticity of the Jost solutions,and successfully construct the RH problem of the focusing mKdV equation.We solve the RH problem when 1/S_(11)(k)has a single highorder pole and multiple high-order poles.Furthermore,we derive the soliton solutions of the focusing mKdV equation which corresponding with a single high-order pole and multiple high-order poles,respectively.Finally,the dynamics of one-and two-soliton solutions are graphically discussed.展开更多
This article proves the existence and uniqueness conditions of the solution of two-dimensional time-space tempered fractional di usion-wave equation.We nd analytical solution of the equation via the two-step Adomian d...This article proves the existence and uniqueness conditions of the solution of two-dimensional time-space tempered fractional di usion-wave equation.We nd analytical solution of the equation via the two-step Adomian decomposition method(TSADM).The existence result is obtained with the help of some xed point theorems,while the uniqueness of the solution is a consequence of the Banach contraction principle.Additionally,we study the stability via the Ulam-Hyers stability for the considered problem.The existing techniques use numerical algorithms for solving the two-dimensional time-space tempered fractional di usion-wave equation,and thus,the results obtained from them are the approximate solution of the problem with high computational and time complexity.In comparison,our proposed method eliminates all the diffculties arising from numerical methods and gives an analytical solution with a straightforward process in just one iteration.展开更多
We couple together existing ideas,existing results,special structure and novel ideas to accomplish the exact limits and improved decay estimates with sharp rates for all order derivatives of the global weak solutions ...We couple together existing ideas,existing results,special structure and novel ideas to accomplish the exact limits and improved decay estimates with sharp rates for all order derivatives of the global weak solutions of the Cauchy problem for an n-dimensional incompressible Navier-Stokes equations.We also use the global smooth solution of the corresponding heat equation to approximate the global weak solutions of the incompressible Navier-Stokes equations.展开更多
We have utilized three novel methods,called generalized direct algebraic,modified F-expansion and improved simple equation methods to construct traveling wave solutions of the system of shallow water wave equations an...We have utilized three novel methods,called generalized direct algebraic,modified F-expansion and improved simple equation methods to construct traveling wave solutions of the system of shallow water wave equations and modified Benjamin-Bona-Mahony equation.After substituting particular values of the parameters,different solitary wave solutions are derived from the exact traveling wave solutions.It is shown that these employed methods are more powerful tools for nonlinear wave equations.展开更多
This paper is a discussion of global solutions to the initial value problems for general- ized Banjamin-Bona-Mahony equations.Some long time behaviors of the solutions are presented with the initial data in some certa...This paper is a discussion of global solutions to the initial value problems for general- ized Banjamin-Bona-Mahony equations.Some long time behaviors of the solutions are presented with the initial data in some certain Sobolev spaces.We employ the method of integral estimate, Fourier transform and Gronwall’s inequality.展开更多
基金supported by the NSF of China(11031003, 10871040)
文摘In this paper, we prove the existence of the pullback attractor for the nonautonomous Benjamin-Bona-Mahony equations in H2 by establishing the pullback uniformly asymptotical compactness.
文摘New two-component vector breather solution of the modified Benjamin-Bona-Mahony(MBBM)equation is considered.Using the generalized perturbation reduction method,the MBBM equation is reduced to the coupled nonlinear Schr¨odinger equations for auxiliary functions.Explicit analytical expressions for the profile and parameters of the vector breather oscillating with the sum and difference of the frequencies and wavenumbers are presented.The two-component vector breather and single-component scalar breather of the MBBM equation is compared.
文摘In this paper, a spectral method to analyze the generalized Benjamin Bona Mahony equations is used. The existence and uniqueness of global smooth solution of these equations are proved. The large time error estimation between the spectral approximate solution and the exact solution is obtained.
文摘In this paper,we show the existence of pullback attractors for the nonautonomous Benjamin-Bona-Mahony equations by establishing the pullback uniform asymptotically compactness.
文摘In this paper, the ansatze method is implemented to study the exact solutions for the modified Benjamin-Bona-Mahony equation (mBBM). The singular-shaped traveling wave solution, the Bell-shape is traveling wave solution, the kink-shaped traveling wave solution and the periodic traveling wave solution is obtained. With the assist of computational software MATLAB, the graphical exemplifications of solutions are illustrated of the two-dimension (2D) and three-dimension (3D) plots.
文摘In this article, the application of variational homotopy perturbation method is applied to solve Benjamin-Bona-Mahony equation. Then, we obtain the numerical solution of BBM equation using the initial condition. Comparison with Adomian’s decomposition method, homotopy perturbation method, and with the exact solution shows that VHPM is more effective and accurate than ADM and HPM, and is reliable and manageable for this type of equation.
文摘In this paper, we obtained a kind of lump solutions of the Kadomtsev-Petviashvili-Benjamin-Bona-Mahony (KP-BBM) equation with the assistance of Mathematica. Some contour plots with different determinant values are sequentially made to show that the corresponding lump solutions tend to zero when x2+y2→∞. Particularly, lump solutions with specific values of the include parameters are plotted, as illustrative examples. Finally, a combination of stripe soliton and lump soliton is discussed to the KP-BBM equation, in which such a solution presents two different interesting phenomena: lump-kink and lump-soliton. Simultaneously, breather rational soliton solutions are displayed.
文摘In order to get the traveling wave solutions of the Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZK-BBM) equation, it is reduced to an ordinary differential equation (ODE) under the travelling wave transformation first. Then complete discrimination system for polynomial is applied to the ZK-BBM equation. The traveling wave solutions of the equation can be obtained.
文摘For many control systems in real life, impulses and delays are intrinsic phenomena that do not modify their controllability. So we conjecture that under certain conditions the abrupt changes and delays as perturbations of a system do not destroy its controllability. There are many practical examples of impulsive control systems with delays, such as a chemical reactor system, a financial system with two state variables, the amount of money in a market and the savings rate of a central bank, and the growth of a population diffusing throughout its habitat modeled by a reaction-diffusion equation. In this paper we apply the Rothe’s Fixed Point Theorem to prove the interior approximate controllability of the following Benjamin Bona-Mohany(BBM) type equation with impulses and delay where and are constants, Ω is a domain in , ω is an open non-empty subset of Ω , denotes the characteristic function of the set ω , the distributed control , are continuous functions and the nonlinear functions are smooth enough functions satisfying some additional conditions.
基金Supported by National Science Foundation of China(11971027,12171497)。
文摘This paper deals with quasilinear elliptic equations of singular growth like-Δu-uΔ(u^(2))=a(x)u^(-1).We establish the existence of positive solutions for general a(x)∈L^(p)(Ω),p>2,whereΩis a bounded domain inℝ^(N)with N≥1.
基金Supported by the National Natural Science Foundation of China(11671403,11671236,12101192)Henan Provincial General Natural Science Foundation Project(232300420113)。
文摘In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.
基金Supported by Research Project Supported by Shanxi Scholarship Council of China(2021-029)International Cooperation Base and Platform Project of Shanxi Province(202104041101019)+2 种基金Basic Research Plan of Shanxi Province(202203021211129)Shanxi Province Natural Science Research(202203021212249)Special/Youth Foundation of Taiyuan University of Technology(2022QN101)。
文摘In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,the original Boussinesq system is transformed into an equivalent one.Then we discretize it using the second-order backward di erentiation formula(BDF2)and Crank-Nicolson(CN)to obtain two second-order time-advanced schemes.In both numerical schemes,a pressure-correction method is employed to decouple the velocity and pressure.These two schemes possess the desired property that they can be fully decoupled with satisfying unconditional stability.We rigorously prove both the unconditional stability and unique solvability of the discrete schemes.Furthermore,we provide detailed implementations of the decoupling procedures.Finally,various 2D numerical simulations are performed to verify the accuracy and energy stability of the proposed schemes.
基金supported by National Key R&D Program of China(Grant No.2021YFA1000800)National Natural Science Foundation of China(Grant No.12288201)+3 种基金supported by National Natural Science Foundation of China(Grant Nos.12022114 and 12288201)CAS Project for Young Scientists in Basic Research(Grant No.YSBR-031)Youth Innovation Promotion Association of CAS(Grant No.2019002)supported by National Natural Science Foundation of China(Grant No.12201209)。
文摘The study of the hydrodynamic limit of the Boltzmann equation with physical boundary is a challenging problem due to the appearance of the viscous and Knudsen boundary layers.In this paper,the hydrodynamic limit from the Boltzmann equation with the specular reflection boundary condition to the incompressible Euler equations in a channel is investigated.Based on the multi-scaled Hilbert expansion,the equations with boundary conditions and compatibility conditions for interior solutions,and viscous and Knudsen boundary layers are derived under different scaling,respectively.Then,some uniform estimates for the interior solutions,and viscous and Knudsen boundary layers are established.With the help of the L2-L∞ framework and the uniform estimates obtained above,the solutions to the Boltzmann equation are constructed by the truncated Hilbert expansion with multiscales,and hence the hydrodynamic limit in the incompressible Euler level is justified.
基金Project supported by the National Natural Science Foundation of China(Grant No.12201329)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY24A010002)the Natural Science Foundation of Ningbo(Grant No.2023J126)。
文摘The third-order flow Gerdjikov–Ivanov(TOFGI)equation is studied,and the Darboux transformation(DT)is used to obtain the determinant expression of the solution of this equation.On this basis,the soliton solution,rational solution,positon solution,and breather solution of the TOFGI equation are obtained by taking zero seed solution and non-zero seed solution.The exact solutions and dynamic properties of the Gerdjikov–Ivanov(GI)equation and the TOFGI equation are compared in detail under the same conditions,and it is found that there are some differences in the velocities and trajectories of the solutions of the two equations.
基金supported by The National Natural Science Foundation of China(Grant No.12362034)The Scientific Research Project of Inner Mongolia University of Technology(Grant Nos.DC2200000913+1 种基金DC2300001439)The Science and Technology Plan Project of Inner Mongolia Autonomous Region(Grant No.2022YFSH0047)。
文摘Loess-mudstone landslides are common in the Loess Plateau.Investigations into the mechanical theory of loess-mudstone landslides have become a challenging undertaking due to the distinctive interfacial properties of loess-mudstone and the unique water sensitivity characteristics of mudstone.Hence,it is imperative to develop innovative mechanical models and mathematical equations specifically tailored to loess-mudstone landslides.In this study,we analyze the fracture mechanism of the loess-mudstone sliding zone using plastic fracture mechanics and develop a unique fracture yield model.To calculate the energy release rate during the expansion of the loess-mudstone interface tip region,the shear fracture energy G is applied,which reflects both the yield failure criterion and the fracture failure criterion.To better understand the instability mechanism of loess-mudstone landslides,equilibrium equations based on G are established for tractive,compressive,and tensile loess-mudstone landslides.Based on the equilibrium equation,the critical length Lc of the sliding zone can be used for the safety evaluation of loess-mudstone landslides.In this way,this study proposes a new method for determining the failure mechanism and equilibrium equation of loessmudstone landslides,which resolves their starting mechanism,mechanical equilibrium equations,and safety evaluation indicators,thus justifying the scientific significance and practical value of this research.
基金supported by the National Natural Science Foundation of China(Nos.12371255 and 11975306)the Natural Science Foundation of Jiangsu Province(No.BK20181351)+3 种基金the Six Talent Peaks Project in Jiangsu Province(No.JY-059)the 333 Project in Jiangsu Provincethe Fundamental Research Fund for the Central Universities(Nos.2019ZDPY07)the Graduate Innovation Program of China University of Mining and Technology(No.2022WLJCRCZL139).
文摘The focusing modified Korteweg-de Vries(mKdV)equation with multiple high-order poles under the nonzero boundary conditions is first investigated via developing a Riemann-Hilbert(RH)approach.We begin with the asymptotic property,symmetry and analyticity of the Jost solutions,and successfully construct the RH problem of the focusing mKdV equation.We solve the RH problem when 1/S_(11)(k)has a single highorder pole and multiple high-order poles.Furthermore,we derive the soliton solutions of the focusing mKdV equation which corresponding with a single high-order pole and multiple high-order poles,respectively.Finally,the dynamics of one-and two-soliton solutions are graphically discussed.
文摘This article proves the existence and uniqueness conditions of the solution of two-dimensional time-space tempered fractional di usion-wave equation.We nd analytical solution of the equation via the two-step Adomian decomposition method(TSADM).The existence result is obtained with the help of some xed point theorems,while the uniqueness of the solution is a consequence of the Banach contraction principle.Additionally,we study the stability via the Ulam-Hyers stability for the considered problem.The existing techniques use numerical algorithms for solving the two-dimensional time-space tempered fractional di usion-wave equation,and thus,the results obtained from them are the approximate solution of the problem with high computational and time complexity.In comparison,our proposed method eliminates all the diffculties arising from numerical methods and gives an analytical solution with a straightforward process in just one iteration.
文摘We couple together existing ideas,existing results,special structure and novel ideas to accomplish the exact limits and improved decay estimates with sharp rates for all order derivatives of the global weak solutions of the Cauchy problem for an n-dimensional incompressible Navier-Stokes equations.We also use the global smooth solution of the corresponding heat equation to approximate the global weak solutions of the incompressible Navier-Stokes equations.
文摘We have utilized three novel methods,called generalized direct algebraic,modified F-expansion and improved simple equation methods to construct traveling wave solutions of the system of shallow water wave equations and modified Benjamin-Bona-Mahony equation.After substituting particular values of the parameters,different solitary wave solutions are derived from the exact traveling wave solutions.It is shown that these employed methods are more powerful tools for nonlinear wave equations.
文摘This paper is a discussion of global solutions to the initial value problems for general- ized Banjamin-Bona-Mahony equations.Some long time behaviors of the solutions are presented with the initial data in some certain Sobolev spaces.We employ the method of integral estimate, Fourier transform and Gronwall’s inequality.