To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal ro...To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China.展开更多
As a hydrocarbon-rich sedimentary basin in China,the Ordos Basin has enormous potential for shale gas resources.The shale of the Upper Carboniferous Benxi Formation is rich in organic matter,however,its palaeoenvironm...As a hydrocarbon-rich sedimentary basin in China,the Ordos Basin has enormous potential for shale gas resources.The shale of the Upper Carboniferous Benxi Formation is rich in organic matter,however,its palaeoenvironment and organic matter enrichment mode are yet to be revealed.In this study,the geochemical characteristics of the shale of the Benxi Formation in the east-central part of the Ordos Basin were analyzed to investigate its palaeoenvironment.At the same time,the organic matter enrichment modes in different sedimentary facies were compared and analyzed.The results indicate that:1)the shale of the Benxi Formation was mainly deposited on the continental margin and strong terrestrial clastic input;2)the deposition period of the Benxi Formation shale had a hot and humid climate with high palaeoproductivity and local volcanic hydrothermal fluid,and a high sedimentation rate with the strong stagnant environment.The bottom water was in dysoxic conditions and a semi-saline deposition environment;3)multiple factors,such as palaeoproductivity,volcanic hydrothermal,redox conditions,and palaeosalinity interact to influence the enrichment of shale organic matter in Benxi Formation;4)the organic matter enrichment modes of continental,marine-continental transitional,and marine shales can be classified into three types:“production mode”,“hybrid mode of preservation and production”,and“preservation mode”,respectively.This study provides a reference for the organic matter enrichment mode,shale gas formation conditions,and core area evaluation in these marine-continental transitional shales,and also offers new guidance for exploration ideas for shale gas in different sedimentary facies.展开更多
Objective The Jilin-Liaoning area has widely spread Meso- and Neoproterozoic sediments and is always a focused area for researching Precambrian geology. Previous study has achieved a series of results about Neoprotero...Objective The Jilin-Liaoning area has widely spread Meso- and Neoproterozoic sediments and is always a focused area for researching Precambrian geology. Previous study has achieved a series of results about Neoproterozoic stratigraphy in this area, but the lack of precise geochronological data and signs of stratigraphic correlation has resulted in the long controversial stratigraphic age and regional correlation. During recent years,展开更多
Based on the data of outcrop,core,logging,gas testing,and experiments,the natural gas accumulation and aluminous rock mineralization integrated research was adopted to analyze the controlling factors of aluminous rock...Based on the data of outcrop,core,logging,gas testing,and experiments,the natural gas accumulation and aluminous rock mineralization integrated research was adopted to analyze the controlling factors of aluminous rock series effective reservoirs in the Ordos Basin,NW China,as well as the configuration of coal-measure source rocks and aluminous rock series reservoirs.A natural gas accumulation model was constructed to evaluate the gas exploration potential of aluminous rock series under coal seam in the basin.The effective reservoirs of aluminous rock series in the Ordos Basin are composed of honeycomb-shaped bauxites with porous residual pisolitic and detrital structures,with the diasporite content of greater than 80%and dissolved pores as the main storage space.The bauxite reservoirs are formed under a model that planation controls the material supply,karst paleogeomorphology controls diagenesis,and land surface leaching improves reservoir quality.The hot humid climate and sea level changes in the Late Carboniferous–Early Permian dominated the development of a typical coal-aluminum-iron three-stage stratigraphic structure.The natural gas generated by the extensive hydrocarbon generation of coal-measure source rocks was accumulated in aluminous rock series under the coal seam,indicating a model of hydrocarbon accumulation under the source.During the Upper Carboniferous–Lower Permian,the relatively low-lying area on the edge of an ancient land or island in the North China landmass was developed.The gas reservoirs of aluminous rock series,which are clustered at multiple points in lenticular shape,are important new natural gas exploration fields with great potential in the Upper Paleozoic of North China Craton.展开更多
The Upper Carboniferous Benxi Formation of the Ordos Basin is the lowest strata overlying Middle Ordovician above the major ca.150-Myr sedimentary gap that characterizes the entire North China Block(NCB).We apply an i...The Upper Carboniferous Benxi Formation of the Ordos Basin is the lowest strata overlying Middle Ordovician above the major ca.150-Myr sedimentary gap that characterizes the entire North China Block(NCB).We apply an integrated analysis of stratigraphy,petrography,and U-Pb dates and Hf isotopes on detrital zircons to investigate its provenance and relationships to the progressive collisions that formed the Xing’an-Mongolia Orogenic Belt to the north and the Qinling Orogenic Belt to the south.The results show that,in addition to regional patterns of siliciclastic influx from these new uplifted sources,the Benxi Formation is composed of two sequences corresponding to long-term glacial-interglacial cycles during the Moscovian to lower Gzhelian stages which drove global changes of eustatic sea level and weathering.The spatio-temporal distribution of sediment isopachs and facies indicate there were two sediment-infilling pulses,during which the southern and the northern Ordos Basin developed tidal-reworked deltas.The age spectra from detrital zircons,trace element patterns and εNd(t)values reveal that the siliciclastics forming the southern delta was sourced in the Qinling Orogenic Belt,whereas the northern delta was derived from the Xing’an-Mongolia Orogenic Belt.The source-to-sink evolution of this Upper Paleozoic system records the progressive development of orogenic belts and uplifts forming on the southern and northern margins of the NCB prior to its collisions with the South China and the Siberian plates,respectively.展开更多
Deposits of 10 volcanic events of 6 stages have been discovered by the authors after detailed field and lab studies of the Benxi and Taiyuan Formations in Shandong Province and its adjacent regions. They show certain ...Deposits of 10 volcanic events of 6 stages have been discovered by the authors after detailed field and lab studies of the Benxi and Taiyuan Formations in Shandong Province and its adjacent regions. They show certain temporal-spatial distribution characteristics. Volcanic fragments were probably derived from two different volcanic sources north and south of the North China Platform, while the magma of the two volcanic sources was probably derived from the lower crust. A new stratigraphic correlation scheme is put forward for the Benxi and Taiyuan Formations in this region on the basis of previous biostratigraphic work with the regionally widespread volcanic event layers as the marker bed for the isochronous stratigraphic correlation on a super-regional scale and in conjunction with the maximum transgressive event layers.展开更多
基金Supported by the PetroChina Science and Technology Major Project(2023ZZ18-03)Changqing Oilfield Major Science and Technology Project(2023DZZ01)。
文摘To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China.
基金supported from the Natural Science Basic Research Program of Shaanxi Province(No.2020JQ-744)China Postdoctoral Science Foundation(No.2020M673443)+2 种基金Shaanxi Provincial Education Department general special project(No.21JK0775)Opening Project of Key Laboratory of Coal Resources Exploration and Comprehensive Utilization,Ministry of Natural Resources(No.KF2021-7)National Natural Science Foundation of China(Grant No.4210021463).
文摘As a hydrocarbon-rich sedimentary basin in China,the Ordos Basin has enormous potential for shale gas resources.The shale of the Upper Carboniferous Benxi Formation is rich in organic matter,however,its palaeoenvironment and organic matter enrichment mode are yet to be revealed.In this study,the geochemical characteristics of the shale of the Benxi Formation in the east-central part of the Ordos Basin were analyzed to investigate its palaeoenvironment.At the same time,the organic matter enrichment modes in different sedimentary facies were compared and analyzed.The results indicate that:1)the shale of the Benxi Formation was mainly deposited on the continental margin and strong terrestrial clastic input;2)the deposition period of the Benxi Formation shale had a hot and humid climate with high palaeoproductivity and local volcanic hydrothermal fluid,and a high sedimentation rate with the strong stagnant environment.The bottom water was in dysoxic conditions and a semi-saline deposition environment;3)multiple factors,such as palaeoproductivity,volcanic hydrothermal,redox conditions,and palaeosalinity interact to influence the enrichment of shale organic matter in Benxi Formation;4)the organic matter enrichment modes of continental,marine-continental transitional,and marine shales can be classified into three types:“production mode”,“hybrid mode of preservation and production”,and“preservation mode”,respectively.This study provides a reference for the organic matter enrichment mode,shale gas formation conditions,and core area evaluation in these marine-continental transitional shales,and also offers new guidance for exploration ideas for shale gas in different sedimentary facies.
基金supported by the Nature Science Foundation of China(grant No.41472082)China Geological Survey(grant No.121201102000150012)
文摘Objective The Jilin-Liaoning area has widely spread Meso- and Neoproterozoic sediments and is always a focused area for researching Precambrian geology. Previous study has achieved a series of results about Neoproterozoic stratigraphy in this area, but the lack of precise geochronological data and signs of stratigraphic correlation has resulted in the long controversial stratigraphic age and regional correlation. During recent years,
基金Supported by the PetroChina Science and Technology Major Project(2021DJ2101).
文摘Based on the data of outcrop,core,logging,gas testing,and experiments,the natural gas accumulation and aluminous rock mineralization integrated research was adopted to analyze the controlling factors of aluminous rock series effective reservoirs in the Ordos Basin,NW China,as well as the configuration of coal-measure source rocks and aluminous rock series reservoirs.A natural gas accumulation model was constructed to evaluate the gas exploration potential of aluminous rock series under coal seam in the basin.The effective reservoirs of aluminous rock series in the Ordos Basin are composed of honeycomb-shaped bauxites with porous residual pisolitic and detrital structures,with the diasporite content of greater than 80%and dissolved pores as the main storage space.The bauxite reservoirs are formed under a model that planation controls the material supply,karst paleogeomorphology controls diagenesis,and land surface leaching improves reservoir quality.The hot humid climate and sea level changes in the Late Carboniferous–Early Permian dominated the development of a typical coal-aluminum-iron three-stage stratigraphic structure.The natural gas generated by the extensive hydrocarbon generation of coal-measure source rocks was accumulated in aluminous rock series under the coal seam,indicating a model of hydrocarbon accumulation under the source.During the Upper Carboniferous–Lower Permian,the relatively low-lying area on the edge of an ancient land or island in the North China landmass was developed.The gas reservoirs of aluminous rock series,which are clustered at multiple points in lenticular shape,are important new natural gas exploration fields with great potential in the Upper Paleozoic of North China Craton.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41872109 and 41702108)China Postdoctoral Science Foundation(Grant No.2019M650833)Everest Scientific Research Program of Chengdu University of Technology。
文摘The Upper Carboniferous Benxi Formation of the Ordos Basin is the lowest strata overlying Middle Ordovician above the major ca.150-Myr sedimentary gap that characterizes the entire North China Block(NCB).We apply an integrated analysis of stratigraphy,petrography,and U-Pb dates and Hf isotopes on detrital zircons to investigate its provenance and relationships to the progressive collisions that formed the Xing’an-Mongolia Orogenic Belt to the north and the Qinling Orogenic Belt to the south.The results show that,in addition to regional patterns of siliciclastic influx from these new uplifted sources,the Benxi Formation is composed of two sequences corresponding to long-term glacial-interglacial cycles during the Moscovian to lower Gzhelian stages which drove global changes of eustatic sea level and weathering.The spatio-temporal distribution of sediment isopachs and facies indicate there were two sediment-infilling pulses,during which the southern and the northern Ordos Basin developed tidal-reworked deltas.The age spectra from detrital zircons,trace element patterns and εNd(t)values reveal that the siliciclastics forming the southern delta was sourced in the Qinling Orogenic Belt,whereas the northern delta was derived from the Xing’an-Mongolia Orogenic Belt.The source-to-sink evolution of this Upper Paleozoic system records the progressive development of orogenic belts and uplifts forming on the southern and northern margins of the NCB prior to its collisions with the South China and the Siberian plates,respectively.
基金This study was supported by the National Natural Science Foundation of China Grant No. 4880102
文摘Deposits of 10 volcanic events of 6 stages have been discovered by the authors after detailed field and lab studies of the Benxi and Taiyuan Formations in Shandong Province and its adjacent regions. They show certain temporal-spatial distribution characteristics. Volcanic fragments were probably derived from two different volcanic sources north and south of the North China Platform, while the magma of the two volcanic sources was probably derived from the lower crust. A new stratigraphic correlation scheme is put forward for the Benxi and Taiyuan Formations in this region on the basis of previous biostratigraphic work with the regionally widespread volcanic event layers as the marker bed for the isochronous stratigraphic correlation on a super-regional scale and in conjunction with the maximum transgressive event layers.