Composite materials from oil palmfiber enhance sustainability by utilizing renewable resources,reducing depen-dence on non-renewable materials,and lessening environmental impact.Despite their mechanical and dimen-siona...Composite materials from oil palmfiber enhance sustainability by utilizing renewable resources,reducing depen-dence on non-renewable materials,and lessening environmental impact.Despite their mechanical and dimen-sional stability limitations,oil palmfiber-based polymer composites offer significant advantages,such as natural abundance,potential weight reduction,and cost-effectiveness due to local availability and renewability.The growing interest in oil palm hybrid composites,made from blending differentfibers,is due to their custo-mizable mechanical and physical properties.Hybridization is one of the most effective methods to reinforce and improve the performance of oil palm-derived composite materials.This review investigates the structural qualities of hybrid composites made from oil palmfibers,their suitability for diverse applications,and recent advancements in thefield.By focusing on the availability,properties,applications,challenges,and future direc-tions of oil palmfiber hybrid composites,this review highlights the potential of these materials to enhance mechanical and functional properties,thereby contributing to sustainable development and innovation in com-posite materials.展开更多
Naturalfibre(NFR)reinforced functional polymer composites are quickly becoming an indispensable sustainable material in the transportation industry because of their lightweight,lower cost in manufacture,and adaptabilit...Naturalfibre(NFR)reinforced functional polymer composites are quickly becoming an indispensable sustainable material in the transportation industry because of their lightweight,lower cost in manufacture,and adaptability to a wide variety of goods.However,the major difficulties of using thesefibres are their existing poor dimensional stability and the extreme hydrophilicity.In assessing the mechanical properties(MP)of composites,the interfacial bonding(IB)happening between the NFR and the polymer matrix(PM)plays an incredibly significant role.When compared to NFR/syntheticfibre hybrid composites,hybrid composites(HC)made up of two separate NFR are less prevalent;yet,these hybrid composites also have the potential to be valuable materials in terms of environmental issues.A new dimension to theflexibility of composites reinforced with NFR is added by the cost-effective manufacture of hybrid composites utilising NFR.The purpose of this study is to offer an over-view of the keyfindings that were presented on hybrid composites.The emphasis was focused on the factors that influence the performance of the naturalfiber composites,diverse approaches to enhancing MP,physical,electri-cal,and thermal characteristics of the HC.HC study in polymer science gains interest for applications in con-struction and automotive industries.展开更多
Recently,abacafibers have become the focus of specialized research due to their intriguing characteristics,with their outstanding mechanical properties being a particularly notable.In the conducted study,the abacafibers...Recently,abacafibers have become the focus of specialized research due to their intriguing characteristics,with their outstanding mechanical properties being a particularly notable.In the conducted study,the abacafibers underwent a preliminary treatment process involving an alkaline solution,which was composed of 0.5%sodium hydroxide(NaOH)and 50%acetic acid(CH3COOH).This process entailed immersing eachfiber in the solution for a period of one hour.This treatment led to a 52.36%reduction in lignin content compared to the levels before treatment,resulting in a dramatic decrease in the full width at half maximum(FWHM)in the XRD spectra from 1.13 to 0.13.This change indicates that thefibers became more crystalline following the treatment.The abacafibers were also characterized using BET(Brunauer Emmett Teller)measurements,which revealed that the aver-age pore length ranged from 33–49 nm and the surface area was between 13–28 m^(2)·g^(-1).The morphology of the abacafiber after alkali an hydrolisis treatment(AFAH)appeared rougher and more uniform.DMA measurements revealed a significant rise in the storage modulus of the singlefiber post-treatment,with dependencies on both frequency and temperature.AFAH exhibited an optimal absorption coefficient ofα=0.9 for frequencies above 2500 Hz.The combined effect of alkalization and hydrolyzation treatments,while resulting in an enhancement in the mechanical properties of thefibers,also reduced high-intensity noise produced by sources such as machin-ery,aircraft takeoffs and landings,etc.,across a broader working frequency range.展开更多
The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scatt...The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages,such as lightweight and ease of embedding.However,identifying the precise location of damage from the optical fiber signals remains a critical challenge.In this paper,a novel approach which namely Modified Sliding Window Principal Component Analysis(MSWPCA)was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors.The proposed method is able to extract signal characteristics interfered by measurement noise to improve the accuracy of damage detection.Specifically,we applied the MSWPCA method to monitor and analyze the debonding propagation process in honeycomb sandwich panel structures.Our findings demonstrate that the training model exhibits high precision in detecting the location and size of honeycomb debonding,thereby facilitating reliable and efficient online assessment of the structural health state.展开更多
Orthogonal time frequency space(OTFS),as a novel 2-D modulation technique,has been proposed to achieve better BER performances over delayDoppler channels.In this paper,we propose two different power allocation(PA)algo...Orthogonal time frequency space(OTFS),as a novel 2-D modulation technique,has been proposed to achieve better BER performances over delayDoppler channels.In this paper,we propose two different power allocation(PA)algorithms in OTFS systems with zero forcing(ZF)or minimum mean square error(MMSE)equalization,where general formulas with PA are derived in advance under the condition of minimum BER(MBER)criterion.On one hand,a suboptimal MBER power allocation method is put forward to achieve better BER performances,and then analytical BER expressions are derived with proposed PA strategy.Considering the case of MMSE equalization,a combined subsymbol allocation(SA)and PA strategy is raised,where some subsymbols may be abandoned due to worse channel conditions,and then it is proven effectively to improve BER performances through theoretical and simulation results.Furthermore,BER performances with proposed joint SA and PA strategy are also investigated in delay-Doppler channels,where an improved message passing(MP)receiver based on equivalent channel matrix with PA is given.展开更多
Lignocellulose nanofibers(LCNFs) as a new material is attracting extensive attention. The pretreatment and mechanical fibrillation are the two main stages involved in the preparation of LCNFs, and lignin plays the imp...Lignocellulose nanofibers(LCNFs) as a new material is attracting extensive attention. The pretreatment and mechanical fibrillation are the two main stages involved in the preparation of LCNFs, and lignin plays the important role of these two stages. This review discussed the interaction between lignin and chemicals in the pretreatment stage, and discovered the general law of the effect of lignin in the mechanical fibrillation stage.Lignin exhibits both promotion and inhibition effects on mechanical fibrillation, and the mutual competition between the two effects ultimately affects the energy consumption, morphology and yield of LCNFs. Furthermore, the recent research progress related to the contributions of lignin on the functional application of LCNFs was summarized, aiming to provide profound guidance for the preparation and application of LCNFs.展开更多
In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the micr...In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the microscopic scale,and the related infrared spectra and thermal properties.It is found that light and heat can con-tribute to the aging process.In particular,the longitudinal tensile strength displays a non-monotonic trend,i.e.,itfirst increases and then decreases over time.By contrast,the longitudinal compressive and inter-laminar shear strengths do not show significant changes.It is also shown that the inter-laminar shear strength of carbonfiber/epoxy resin composites with inter-laminar hybrid structure is better than that of pure carbonfiber materials.The related resistance to corrosion can be improved by more than 41%.展开更多
Three-dimensional C/SiOx nanofiber anode was prepared by polydimethylsiloxane(PDMS)and polyacrylonitrile(PAN)as precursors via electrospinning and freeze-drying successfully.In contrast to conventional carbon cover-ing...Three-dimensional C/SiOx nanofiber anode was prepared by polydimethylsiloxane(PDMS)and polyacrylonitrile(PAN)as precursors via electrospinning and freeze-drying successfully.In contrast to conventional carbon cover-ing Si-based anode materials,the C/SiOx structure is made up of PAN-C,a 3D carbon substance,and SiOx load-ing steadily on PAN-C.The PAN carbon nanofibers and loaded SiOx from pyrolyzed PDMS give increased conductivity and a stable complex structure.When employed as lithium-ion batteries(LIBs)anode materials,C/SiOx-1%composites were discovered to have an extremely high lithium storage capacity and good cycle per-formance.At a current density of 100 mA/g,its reversible capacity remained at 761 mA/h after 50 charge-dis-charge cycles and at 670 mA/h after 200 cycles.The C/SiOx-1%composite aerogel is a particularly intriguing anode candidate for high-performance LIBs due to these appealing qualities.展开更多
To understand the effects offiller-asphalt ratio on different properties of lignin and polyesterfiber reinforced shape memory polyurethane(SMPU)/styrene butadiene styrene(SBS)composite modified asphalt mortar(PSAM),as we...To understand the effects offiller-asphalt ratio on different properties of lignin and polyesterfiber reinforced shape memory polyurethane(SMPU)/styrene butadiene styrene(SBS)composite modified asphalt mortar(PSAM),as well as to reveal the reinforcing and toughening mechanisms of lignin and polyesterfibers on PSAM,SMPU,SBS and mineral powder werefirst utilized to prepare PSAM.Then the conventional,rheological and anti-cracking properties of ligninfiber reinforced PSAM(LFAM)and polyesterfiber reinforced PSAM(PFAM)at dif-ferentfiller-asphalt ratios were characterized.Test results indicate that the shear strength,deformation resistance and viscosity are increased after adding 0.8wt%ligninfiber or polyesterfiber and increasing thefiller-asphalt ratio from 0.8 to 1.2.The optimalfiller-asphalt ratio of 1.0 is proposed after comprehensive performance assessments of PSAM.Polyesterfiber shows a better reinforcing effect than ligninfiber,but its improvement in the thermal stability of PSAM is not significant at high temperatures.Additionally,the complex modulus,storage modulus,loss modulus and rutting resistance factor of PSAM are improved after adding ligninfiber and polyesterfiber,as well as show an increasing trend as thefiller-asphalt ratio is raised,but the phase angle is gradually decreased.Further,the increase of elastic components in PSAM effectively enhances the anti-deformation ability of PSAM at high temperatures,and polyesterfiber more obviously improves the high-temperature deformation resistance of PSAM than ligninfiber.Finally,the anti-cracking performance of PFAM and LFAM at low temperatures is reduced by 74.2%and 46.7%,respectively,as thefiller-asphalt ratio is raised from 0.8 to 1.2.The low-temperature anti-cracking performance of LFAM is lower than that of PFAM at the samefiller-asphalt ratio,even lower than that of PSA.Compared with ligninfiber,the anti-cracking performance and deformation resistance of PSAM at low temperature is more greatly enhanced by polyester fiber.展开更多
In order to improve the comprehensive utilization rate of highfines sand(HFS)produced by the mine,full solid waste shotcrete(HFS-BFRS)was prepared with HFS asfine aggregate in cooperation with basaltfiber(BF).The strengt...In order to improve the comprehensive utilization rate of highfines sand(HFS)produced by the mine,full solid waste shotcrete(HFS-BFRS)was prepared with HFS asfine aggregate in cooperation with basaltfiber(BF).The strength growth characteristics of HFS-BFRS were analyzed.And thefitting equation of compressive strength growth characteristics of HFS-BFRS under the synergistic effect of multiple factors was given.And based on the orthogonal experimental method,the effects on the compressive strength,splitting tensile strength andflex-ural strength of HFS-BFRS under the action of different levels of influencing factors were investigated.The effect of three factors on the mechanical properties of HFS-BFRS,3,and 28 d,respectively,was revealed by choosing the colloidal sand ratio(C/H),basaltfiber volume fraction(BF Vol)and naphthalene high-efficiency water reducing agent(FDN)as the design variables,combined with indoor tests and theoretical analysis.The results show that the sensitivity of the three factors on compressive strength andflexural strength is C/H>FDN>BF Vol,and split-ting tensile strength is BF Vol>FDN>C/H.Finally,thefitting ratio of HFS-BFRS was optimized by the factor index method,and the rationality was verified by thefield test.For thefluidity of HFS-BFRS,the slump can be improved by 139%under the action of 1.2%FDN,which guarantees the pump-ability of HFS-BFRS.展开更多
This study aims to evaluate the erosion behavior and the hardness of hybrid composites made of varying amounts of coconut shells,walnut shells,and carbonfibers dispersed in a polyester matrix.MINITAB(L16)Taguchi experi...This study aims to evaluate the erosion behavior and the hardness of hybrid composites made of varying amounts of coconut shells,walnut shells,and carbonfibers dispersed in a polyester matrix.MINITAB(L16)Taguchi experiments were used to determine the optimal combination of parameters.In particular,an erosion device con-sisting of a motor with a constantflow rate of 45 L/min,a pump with a diameter of 40 mm,a nozzle with a dia-meter of 5 mm,and a tank made of“perspex glass”55 cm long,30 cm tall,and 25 cm wide was used.The tests were conducted by varying the sample-to-nozzle distance,the pattern angle,and the sand particle size.The results have revealed that the presence of 7.5%by weight of waste coconut shell,for conditions corresponding to 90°angle,sand size 425μm,stand distance 30 cm,gives the best wear resistance(3.04×10^(-5) g/g).Thefiller content and sand particle size affect the erosive rate,with the angle playing a secondary role.The distance between the sample and the nozzle has a weaker effect on erosive wear.The hardness results show that the models(UP-5%carbonfiber-2.5-3.5-4.5-5.5-6.5-7.5 wt.%waste coconut shell)give the best values for prayer compared to the samples(UP-5 wt.%carbonfiber-2.5-3.5-4.5-5.5-6.5-7.5 wt.%waste walnut shell).展开更多
文摘Composite materials from oil palmfiber enhance sustainability by utilizing renewable resources,reducing depen-dence on non-renewable materials,and lessening environmental impact.Despite their mechanical and dimen-sional stability limitations,oil palmfiber-based polymer composites offer significant advantages,such as natural abundance,potential weight reduction,and cost-effectiveness due to local availability and renewability.The growing interest in oil palm hybrid composites,made from blending differentfibers,is due to their custo-mizable mechanical and physical properties.Hybridization is one of the most effective methods to reinforce and improve the performance of oil palm-derived composite materials.This review investigates the structural qualities of hybrid composites made from oil palmfibers,their suitability for diverse applications,and recent advancements in thefield.By focusing on the availability,properties,applications,challenges,and future direc-tions of oil palmfiber hybrid composites,this review highlights the potential of these materials to enhance mechanical and functional properties,thereby contributing to sustainable development and innovation in com-posite materials.
文摘Naturalfibre(NFR)reinforced functional polymer composites are quickly becoming an indispensable sustainable material in the transportation industry because of their lightweight,lower cost in manufacture,and adaptability to a wide variety of goods.However,the major difficulties of using thesefibres are their existing poor dimensional stability and the extreme hydrophilicity.In assessing the mechanical properties(MP)of composites,the interfacial bonding(IB)happening between the NFR and the polymer matrix(PM)plays an incredibly significant role.When compared to NFR/syntheticfibre hybrid composites,hybrid composites(HC)made up of two separate NFR are less prevalent;yet,these hybrid composites also have the potential to be valuable materials in terms of environmental issues.A new dimension to theflexibility of composites reinforced with NFR is added by the cost-effective manufacture of hybrid composites utilising NFR.The purpose of this study is to offer an over-view of the keyfindings that were presented on hybrid composites.The emphasis was focused on the factors that influence the performance of the naturalfiber composites,diverse approaches to enhancing MP,physical,electri-cal,and thermal characteristics of the HC.HC study in polymer science gains interest for applications in con-struction and automotive industries.
文摘Recently,abacafibers have become the focus of specialized research due to their intriguing characteristics,with their outstanding mechanical properties being a particularly notable.In the conducted study,the abacafibers underwent a preliminary treatment process involving an alkaline solution,which was composed of 0.5%sodium hydroxide(NaOH)and 50%acetic acid(CH3COOH).This process entailed immersing eachfiber in the solution for a period of one hour.This treatment led to a 52.36%reduction in lignin content compared to the levels before treatment,resulting in a dramatic decrease in the full width at half maximum(FWHM)in the XRD spectra from 1.13 to 0.13.This change indicates that thefibers became more crystalline following the treatment.The abacafibers were also characterized using BET(Brunauer Emmett Teller)measurements,which revealed that the aver-age pore length ranged from 33–49 nm and the surface area was between 13–28 m^(2)·g^(-1).The morphology of the abacafiber after alkali an hydrolisis treatment(AFAH)appeared rougher and more uniform.DMA measurements revealed a significant rise in the storage modulus of the singlefiber post-treatment,with dependencies on both frequency and temperature.AFAH exhibited an optimal absorption coefficient ofα=0.9 for frequencies above 2500 Hz.The combined effect of alkalization and hydrolyzation treatments,while resulting in an enhancement in the mechanical properties of thefibers,also reduced high-intensity noise produced by sources such as machin-ery,aircraft takeoffs and landings,etc.,across a broader working frequency range.
基金supported by the National Key Research and Development Program of China(No.2018YFA0702800)the National Natural Science Foundation of China(No.12072056)supported by National Defense Fundamental Scientific Research Project(XXXX2018204BXXX).
文摘The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages,such as lightweight and ease of embedding.However,identifying the precise location of damage from the optical fiber signals remains a critical challenge.In this paper,a novel approach which namely Modified Sliding Window Principal Component Analysis(MSWPCA)was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors.The proposed method is able to extract signal characteristics interfered by measurement noise to improve the accuracy of damage detection.Specifically,we applied the MSWPCA method to monitor and analyze the debonding propagation process in honeycomb sandwich panel structures.Our findings demonstrate that the training model exhibits high precision in detecting the location and size of honeycomb debonding,thereby facilitating reliable and efficient online assessment of the structural health state.
基金supported in part by the National Natural Science Foundation of China under Grant 62001138Heilongjiang Provincial Natural Science Foundation of China under Grant LH2021F009+1 种基金China Postdoctoral Science Foundation under Grant 2020M670885Hei Long Jiang Postdoctoral Foundation under Grant LBH-Z20049。
文摘Orthogonal time frequency space(OTFS),as a novel 2-D modulation technique,has been proposed to achieve better BER performances over delayDoppler channels.In this paper,we propose two different power allocation(PA)algorithms in OTFS systems with zero forcing(ZF)or minimum mean square error(MMSE)equalization,where general formulas with PA are derived in advance under the condition of minimum BER(MBER)criterion.On one hand,a suboptimal MBER power allocation method is put forward to achieve better BER performances,and then analytical BER expressions are derived with proposed PA strategy.Considering the case of MMSE equalization,a combined subsymbol allocation(SA)and PA strategy is raised,where some subsymbols may be abandoned due to worse channel conditions,and then it is proven effectively to improve BER performances through theoretical and simulation results.Furthermore,BER performances with proposed joint SA and PA strategy are also investigated in delay-Doppler channels,where an improved message passing(MP)receiver based on equivalent channel matrix with PA is given.
基金financial support from the National Natural Science Foundation of China (Grant No. 31870565 and 32171723)。
文摘Lignocellulose nanofibers(LCNFs) as a new material is attracting extensive attention. The pretreatment and mechanical fibrillation are the two main stages involved in the preparation of LCNFs, and lignin plays the important role of these two stages. This review discussed the interaction between lignin and chemicals in the pretreatment stage, and discovered the general law of the effect of lignin in the mechanical fibrillation stage.Lignin exhibits both promotion and inhibition effects on mechanical fibrillation, and the mutual competition between the two effects ultimately affects the energy consumption, morphology and yield of LCNFs. Furthermore, the recent research progress related to the contributions of lignin on the functional application of LCNFs was summarized, aiming to provide profound guidance for the preparation and application of LCNFs.
文摘In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the microscopic scale,and the related infrared spectra and thermal properties.It is found that light and heat can con-tribute to the aging process.In particular,the longitudinal tensile strength displays a non-monotonic trend,i.e.,itfirst increases and then decreases over time.By contrast,the longitudinal compressive and inter-laminar shear strengths do not show significant changes.It is also shown that the inter-laminar shear strength of carbonfiber/epoxy resin composites with inter-laminar hybrid structure is better than that of pure carbonfiber materials.The related resistance to corrosion can be improved by more than 41%.
基金We are thankful for the Project Supported by the Zhejiang Provincial Natural Science Foundation of China(GB21031200070)National Natural Science Foundation of China(C125020173)for the support to this research.
文摘Three-dimensional C/SiOx nanofiber anode was prepared by polydimethylsiloxane(PDMS)and polyacrylonitrile(PAN)as precursors via electrospinning and freeze-drying successfully.In contrast to conventional carbon cover-ing Si-based anode materials,the C/SiOx structure is made up of PAN-C,a 3D carbon substance,and SiOx load-ing steadily on PAN-C.The PAN carbon nanofibers and loaded SiOx from pyrolyzed PDMS give increased conductivity and a stable complex structure.When employed as lithium-ion batteries(LIBs)anode materials,C/SiOx-1%composites were discovered to have an extremely high lithium storage capacity and good cycle per-formance.At a current density of 100 mA/g,its reversible capacity remained at 761 mA/h after 50 charge-dis-charge cycles and at 670 mA/h after 200 cycles.The C/SiOx-1%composite aerogel is a particularly intriguing anode candidate for high-performance LIBs due to these appealing qualities.
基金This work was supported by National Natural Science Foundation of China(No.52208440)Natural Science Foundation of Jiangsu Province(BK20210618)+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(21KJB580003)National Undergraduate Training Program for Innovation and Entrepreneurship(2021NFUSPITP0638).
文摘To understand the effects offiller-asphalt ratio on different properties of lignin and polyesterfiber reinforced shape memory polyurethane(SMPU)/styrene butadiene styrene(SBS)composite modified asphalt mortar(PSAM),as well as to reveal the reinforcing and toughening mechanisms of lignin and polyesterfibers on PSAM,SMPU,SBS and mineral powder werefirst utilized to prepare PSAM.Then the conventional,rheological and anti-cracking properties of ligninfiber reinforced PSAM(LFAM)and polyesterfiber reinforced PSAM(PFAM)at dif-ferentfiller-asphalt ratios were characterized.Test results indicate that the shear strength,deformation resistance and viscosity are increased after adding 0.8wt%ligninfiber or polyesterfiber and increasing thefiller-asphalt ratio from 0.8 to 1.2.The optimalfiller-asphalt ratio of 1.0 is proposed after comprehensive performance assessments of PSAM.Polyesterfiber shows a better reinforcing effect than ligninfiber,but its improvement in the thermal stability of PSAM is not significant at high temperatures.Additionally,the complex modulus,storage modulus,loss modulus and rutting resistance factor of PSAM are improved after adding ligninfiber and polyesterfiber,as well as show an increasing trend as thefiller-asphalt ratio is raised,but the phase angle is gradually decreased.Further,the increase of elastic components in PSAM effectively enhances the anti-deformation ability of PSAM at high temperatures,and polyesterfiber more obviously improves the high-temperature deformation resistance of PSAM than ligninfiber.Finally,the anti-cracking performance of PFAM and LFAM at low temperatures is reduced by 74.2%and 46.7%,respectively,as thefiller-asphalt ratio is raised from 0.8 to 1.2.The low-temperature anti-cracking performance of LFAM is lower than that of PFAM at the samefiller-asphalt ratio,even lower than that of PSA.Compared with ligninfiber,the anti-cracking performance and deformation resistance of PSAM at low temperature is more greatly enhanced by polyester fiber.
基金This work was supported by the National Natural Science Foundation of China(51834001,52104129)a project supported by the China Postdoctoral Science Foundation(2020M672226,2022T150195)Key Laboratory of Mine Ecological Effects and Systematic Restoration,Ministry of Natural Resources,Open Fund(MEER-2022-09).
文摘In order to improve the comprehensive utilization rate of highfines sand(HFS)produced by the mine,full solid waste shotcrete(HFS-BFRS)was prepared with HFS asfine aggregate in cooperation with basaltfiber(BF).The strength growth characteristics of HFS-BFRS were analyzed.And thefitting equation of compressive strength growth characteristics of HFS-BFRS under the synergistic effect of multiple factors was given.And based on the orthogonal experimental method,the effects on the compressive strength,splitting tensile strength andflex-ural strength of HFS-BFRS under the action of different levels of influencing factors were investigated.The effect of three factors on the mechanical properties of HFS-BFRS,3,and 28 d,respectively,was revealed by choosing the colloidal sand ratio(C/H),basaltfiber volume fraction(BF Vol)and naphthalene high-efficiency water reducing agent(FDN)as the design variables,combined with indoor tests and theoretical analysis.The results show that the sensitivity of the three factors on compressive strength andflexural strength is C/H>FDN>BF Vol,and split-ting tensile strength is BF Vol>FDN>C/H.Finally,thefitting ratio of HFS-BFRS was optimized by the factor index method,and the rationality was verified by thefield test.For thefluidity of HFS-BFRS,the slump can be improved by 139%under the action of 1.2%FDN,which guarantees the pump-ability of HFS-BFRS.
文摘This study aims to evaluate the erosion behavior and the hardness of hybrid composites made of varying amounts of coconut shells,walnut shells,and carbonfibers dispersed in a polyester matrix.MINITAB(L16)Taguchi experiments were used to determine the optimal combination of parameters.In particular,an erosion device con-sisting of a motor with a constantflow rate of 45 L/min,a pump with a diameter of 40 mm,a nozzle with a dia-meter of 5 mm,and a tank made of“perspex glass”55 cm long,30 cm tall,and 25 cm wide was used.The tests were conducted by varying the sample-to-nozzle distance,the pattern angle,and the sand particle size.The results have revealed that the presence of 7.5%by weight of waste coconut shell,for conditions corresponding to 90°angle,sand size 425μm,stand distance 30 cm,gives the best wear resistance(3.04×10^(-5) g/g).Thefiller content and sand particle size affect the erosive rate,with the angle playing a secondary role.The distance between the sample and the nozzle has a weaker effect on erosive wear.The hardness results show that the models(UP-5%carbonfiber-2.5-3.5-4.5-5.5-6.5-7.5 wt.%waste coconut shell)give the best values for prayer compared to the samples(UP-5 wt.%carbonfiber-2.5-3.5-4.5-5.5-6.5-7.5 wt.%waste walnut shell).