In order to investigate the boundedness or compactness of composition operator from the logarithmic Bloch-type space to the Bergman space on the unit polydisc, the classic Bergman norm is firstly changed into another ...In order to investigate the boundedness or compactness of composition operator from the logarithmic Bloch-type space to the Bergman space on the unit polydisc, the classic Bergman norm is firstly changed into another equivalent norm. Then according to some common inequalities, the properties of logarithmic Bloch-type space and the absolute continuity of the general integral, the conditions which the symbol map must meet when the composition operator is bounded or compact are obtained after a series of calculations, and the boundedness and compactness are proved to be equivalent.展开更多
The relation between composition operators on the Dirichlet spaces in the open unit disk and derivative weighted composition operators on the Bergman spaces in the open unit disk is investigated firstly,and for a comb...The relation between composition operators on the Dirichlet spaces in the open unit disk and derivative weighted composition operators on the Bergman spaces in the open unit disk is investigated firstly,and for a combination of several derivative weighted composition operators which acts on classic Bergman space,the lower bound of its essential norm is estimated in terms of the boundary data of the symbols of d-composition operators.Some similar results about composition operators on the Dirichlet space are also presented.A necessary condition is given to determine the compactness of the combination of several derivative weighted composition operators on Bergman spaces.展开更多
We completely characterize commuting dual Toeplitz operators with bounded harmonic symbols on the harmonic Bergman space of the unit disk. We show that for harmonic ■ and ψ, S■Sψ= SψS■ on(L2h)⊥if and only if ■...We completely characterize commuting dual Toeplitz operators with bounded harmonic symbols on the harmonic Bergman space of the unit disk. We show that for harmonic ■ and ψ, S■Sψ= SψS■ on(L2h)⊥if and only if ■ and ψ satisfy one of the following conditions:(1) Both ■ and ψ are analytic on D.(2) Both ■ and ψ are anti-analytic on D.(3) There exist complex constants α and β, not both 0, such that ■ = αψ + β.Furthermore, we give the necessary and sufficient conditions for S■Sψ= S■ψ.展开更多
基金Supported by National Natural Science Foundation of China (No.10971153)
文摘In order to investigate the boundedness or compactness of composition operator from the logarithmic Bloch-type space to the Bergman space on the unit polydisc, the classic Bergman norm is firstly changed into another equivalent norm. Then according to some common inequalities, the properties of logarithmic Bloch-type space and the absolute continuity of the general integral, the conditions which the symbol map must meet when the composition operator is bounded or compact are obtained after a series of calculations, and the boundedness and compactness are proved to be equivalent.
基金Supported by National Natural Science Foundation of China (No. 10971153 and No. 10671141)
文摘The relation between composition operators on the Dirichlet spaces in the open unit disk and derivative weighted composition operators on the Bergman spaces in the open unit disk is investigated firstly,and for a combination of several derivative weighted composition operators which acts on classic Bergman space,the lower bound of its essential norm is estimated in terms of the boundary data of the symbols of d-composition operators.Some similar results about composition operators on the Dirichlet space are also presented.A necessary condition is given to determine the compactness of the combination of several derivative weighted composition operators on Bergman spaces.
基金supported by National Natural Science Foundation of China(Grant Nos.10971020 and 1127059)Research Fund for the Doctoral Program of Higher Education of China
文摘We completely characterize commuting dual Toeplitz operators with bounded harmonic symbols on the harmonic Bergman space of the unit disk. We show that for harmonic ■ and ψ, S■Sψ= SψS■ on(L2h)⊥if and only if ■ and ψ satisfy one of the following conditions:(1) Both ■ and ψ are analytic on D.(2) Both ■ and ψ are anti-analytic on D.(3) There exist complex constants α and β, not both 0, such that ■ = αψ + β.Furthermore, we give the necessary and sufficient conditions for S■Sψ= S■ψ.