期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Bernoulli-based random undersampling schemes for 2D seismic data regularization 被引量:2
1
作者 蔡瑞 赵群 +3 位作者 佘德平 杨丽 曹辉 杨勤勇 《Applied Geophysics》 SCIE CSCD 2014年第3期321-330,351,352,共12页
Seismic data regularization is an important preprocessing step in seismic signal processing. Traditional seismic acquisition methods follow the Shannon–Nyquist sampling theorem, whereas compressive sensing(CS) prov... Seismic data regularization is an important preprocessing step in seismic signal processing. Traditional seismic acquisition methods follow the Shannon–Nyquist sampling theorem, whereas compressive sensing(CS) provides a fundamentally new paradigm to overcome limitations in data acquisition. Besides the sparse representation of seismic signal in some transform domain and the 1-norm reconstruction algorithm, the seismic data regularization quality of CS-based techniques strongly depends on random undersampling schemes. For 2D seismic data, discrete uniform-based methods have been investigated, where some seismic traces are randomly sampled with an equal probability. However, in theory and practice, some seismic traces with different probability are required to be sampled for satisfying the assumptions in CS. Therefore, designing new undersampling schemes is imperative. We propose a Bernoulli-based random undersampling scheme and its jittered version to determine the regular traces that are randomly sampled with different probability, while both schemes comply with the Bernoulli process distribution. We performed experiments using the Fourier and curvelet transforms and the spectral projected gradient reconstruction algorithm for 1-norm(SPGL1), and ten different random seeds. According to the signal-to-noise ratio(SNR) between the original and reconstructed seismic data, the detailed experimental results from 2D numerical and physical simulation data show that the proposed novel schemes perform overall better than the discrete uniform schemes. 展开更多
关键词 Seismic data regularization compressive sensing bernoulli distribution sparse transform UNDERSAMPLING 1-norm reconstruction algorithm.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部