In this paper we give equivalent theorems on simultaneous approximation for the combinations of Bernstein operators by r-th Ditzian- Totik modulus of smoothness w^rφλ (f, t)(0 ≤ λ≤ 1). We also investigate th...In this paper we give equivalent theorems on simultaneous approximation for the combinations of Bernstein operators by r-th Ditzian- Totik modulus of smoothness w^rφλ (f, t)(0 ≤ λ≤ 1). We also investigate the relation between the derivatives of the combinations of Bernstein operators and the smoothness of derivatives of functions.展开更多
In this paper, some equivalent theorems on simultaneous approximation for combinations of Gamma operators by weighted moduli of smoothness ωφλ^r(f,t)wφ^s(0≤λ≤1)are given. The relation between derivatives ...In this paper, some equivalent theorems on simultaneous approximation for combinations of Gamma operators by weighted moduli of smoothness ωφλ^r(f,t)wφ^s(0≤λ≤1)are given. The relation between derivatives of combinations of Gamma operators and smoothness of derivatives of functions is also investigated.展开更多
In this paper, we investigate the simultaneous approximation of Bernstein- Sikkema operators, and establish the direct and equivalent theorems by using the Ditzian-Totik modulus of smoothness.
In this paper, we investigate the degree of approximation by Baskakov_Durrmeyer operator for functions which derivatives have only discontinuity points of the first kind on [0,∞) with exponential growth.
In this paper, we investigate the relation between the rate of convergence for the derivatives of the combinations of Baskakov operators and the smoothness for the derivatives of the functions approximated. We give so...In this paper, we investigate the relation between the rate of convergence for the derivatives of the combinations of Baskakov operators and the smoothness for the derivatives of the functions approximated. We give some direct and inverse results on pointwise simultaneous approximation by the combinations of Baskakov operators. We also give a new equivalent result on pointwise approximation by these operators.展开更多
As a generalization of the Bernstein-Durrmeyer operatora defined on the simplex, a class of general Bernstein-Durrmeyer operators is introduced. With the weighted moduli of smoothness as a metric, we prove a strong di...As a generalization of the Bernstein-Durrmeyer operatora defined on the simplex, a class of general Bernstein-Durrmeyer operators is introduced. With the weighted moduli of smoothness as a metric, we prove a strong direct theorem and an inverse theorem of weak type for these operators by using a decom-position way. From the theorems the characterization of Lp approximation behavior is derived.展开更多
基金Supported by the Key Academic Discipline of Zhejiang Provincial of China under Grant No.2005.
文摘In this paper we give equivalent theorems on simultaneous approximation for the combinations of Bernstein operators by r-th Ditzian- Totik modulus of smoothness w^rφλ (f, t)(0 ≤ λ≤ 1). We also investigate the relation between the derivatives of the combinations of Bernstein operators and the smoothness of derivatives of functions.
文摘In this paper, some equivalent theorems on simultaneous approximation for combinations of Gamma operators by weighted moduli of smoothness ωφλ^r(f,t)wφ^s(0≤λ≤1)are given. The relation between derivatives of combinations of Gamma operators and smoothness of derivatives of functions is also investigated.
基金the National Natural Science Foundation of China (10631080)the Zhejiang Provincial Key Basic Subject Foundation of China(10571014)
文摘In this paper, we investigate the simultaneous approximation of Bernstein- Sikkema operators, and establish the direct and equivalent theorems by using the Ditzian-Totik modulus of smoothness.
文摘In this paper, we investigate the degree of approximation by Baskakov_Durrmeyer operator for functions which derivatives have only discontinuity points of the first kind on [0,∞) with exponential growth.
基金This research is supported by the National Natural Science Foundation of Chinathe Zhejiang Provincial Natural ScienCe Foundation of China
文摘In this paper, we investigate the relation between the rate of convergence for the derivatives of the combinations of Baskakov operators and the smoothness for the derivatives of the functions approximated. We give some direct and inverse results on pointwise simultaneous approximation by the combinations of Baskakov operators. We also give a new equivalent result on pointwise approximation by these operators.
基金Supported by Foundation of Key Item of Science and Technology of Education Ministry of China (03142)Foundation of Higher School of Ningxia (JY2002107)Nature Science Foundation of Zhejiang Province(102002).
文摘As a generalization of the Bernstein-Durrmeyer operatora defined on the simplex, a class of general Bernstein-Durrmeyer operators is introduced. With the weighted moduli of smoothness as a metric, we prove a strong direct theorem and an inverse theorem of weak type for these operators by using a decom-position way. From the theorems the characterization of Lp approximation behavior is derived.