In the present paper, we find that the Bernstein-Durrmeyer operators, besides their better applications in approximation theory and some other fields, are good tools in constructing translation network. With the help ...In the present paper, we find that the Bernstein-Durrmeyer operators, besides their better applications in approximation theory and some other fields, are good tools in constructing translation network. With the help of the de la Vallée properties of the Bernstein-Durrmeyer operators a sequence of translation network operators is constructed and its degree of approximation is dealt.展开更多
The paper is related to the norm estimate of Mercer kernel matrices. The lower and upper bound estimates of Rayleigh entropy numbers for some Mercer kernel matrices on [0, 1] × [0, 1] based on the Bernstein-Durrm...The paper is related to the norm estimate of Mercer kernel matrices. The lower and upper bound estimates of Rayleigh entropy numbers for some Mercer kernel matrices on [0, 1] × [0, 1] based on the Bernstein-Durrmeyer operator kernel are obtained, with which and the approximation property of the Bernstein-Durrmeyer operator the lower and upper bounds of the Rayleigh entropy number and the l2 -norm for general Mercer kernel matrices on [0, 1] x [0, 1] are provided.展开更多
In the present paper, we establish direct and converse theorems for weight-ed Bernstein-Durrmeyer operators under weighted L^p-norm with Jacobi weight w(x)=x^a(1-x)β.All the results involved have no restriction a...In the present paper, we establish direct and converse theorems for weight-ed Bernstein-Durrmeyer operators under weighted L^p-norm with Jacobi weight w(x)=x^a(1-x)β.All the results involved have no restriction a,β〈1-1/p,which indicates that the weighted Bemstein-Durrmeyer operators have some better approxi- mation properties than the usual Bernstein-Durrmeyer operators.展开更多
As a generalization of the Bernstein-Durrmeyer operatora defined on the simplex, a class of general Bernstein-Durrmeyer operators is introduced. With the weighted moduli of smoothness as a metric, we prove a strong di...As a generalization of the Bernstein-Durrmeyer operatora defined on the simplex, a class of general Bernstein-Durrmeyer operators is introduced. With the weighted moduli of smoothness as a metric, we prove a strong direct theorem and an inverse theorem of weak type for these operators by using a decom-position way. From the theorems the characterization of Lp approximation behavior is derived.展开更多
The paper deals with estimates of the covering number for some Mercer kernel Hilbert space with Bernstein-Durrmeyer operators. We first give estimates of l2- norm of Mercer kernel matrices reproducing by the kernelsK...The paper deals with estimates of the covering number for some Mercer kernel Hilbert space with Bernstein-Durrmeyer operators. We first give estimates of l2- norm of Mercer kernel matrices reproducing by the kernelsK(α,β)(x,y):=∑∞k=0 Ck(α,β)(x)Qk(α,β)(y),where Qk(α,β) (x) are the Jacobi polynomials of order k on (0, 1 ), Ck(α,β) 〉 0 are real numbers, and from which give the lower and upper bounds of the covering number for some particular reproducing kernel Hilbert space reproduced by Kα,β (x, y).展开更多
The modified Bernstein-Durrmeyer operators discussed in this paper are given by M_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt, where We will show,for 0<α<1 and 1≤p≤∞ M,f-f_p=O(n^-a)ω_Φ~2(f,t)_p=O(t^(2a...The modified Bernstein-Durrmeyer operators discussed in this paper are given by M_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt, where We will show,for 0<α<1 and 1≤p≤∞ M,f-f_p=O(n^-a)ω_Φ~2(f,t)_p=O(t^(2a)), |M_n f-f(x)|≤M(x(1-x)/n+1/_n2)~a/2ω(f,t)=O(t^a), where otherwise.展开更多
With the weighted modulus of smoothness as a metric,we prove the direct and the inverse theorems of approximation by Bernstein-Durrmeyer operators in LBa M spaces. Especially an approximation equivalent theorem of the...With the weighted modulus of smoothness as a metric,we prove the direct and the inverse theorems of approximation by Bernstein-Durrmeyer operators in LBa M spaces. Especially an approximation equivalent theorem of the operators is also obtained.展开更多
We modify Bernstein-Durrmeyer operators by means of digonal matarix which overeome a difficulty in extending a Berens-Lorentz result to the Bernstein-Durrmeyer operators for second order of smoothness. The direct and ...We modify Bernstein-Durrmeyer operators by means of digonal matarix which overeome a difficulty in extending a Berens-Lorentz result to the Bernstein-Durrmeyer operators for second order of smoothness. The direct and converse theorems for these operators in L_p are also presented by Ditzian-Totik, modulus of smoothness.展开更多
The concern of this paper is to study local approximation properties of the Bernstein-Durrmeyer operators Mn. We derive the complete asymptotic expansion of the operators Mn and their derivatives as n tends to infinit...The concern of this paper is to study local approximation properties of the Bernstein-Durrmeyer operators Mn. We derive the complete asymptotic expansion of the operators Mn and their derivatives as n tends to infinity. It turns out that the appropriate representation is a series of reciprocal factorials. All coefficients are calculated explicitly in a very concise form. Our main theorem contains several earlier partial results as special cases. Finally, we obtain a Voronovskaja-type formula for simultaneous approximation by linear combinations of Mn,展开更多
In this paper, we use the equivalence relation between K-functional and modulus of smoothness, and give the Stechkin-Marchaud-type inequalities for linear combination of Bernstein-Durrmeyer operators . Moreover, we ob...In this paper, we use the equivalence relation between K-functional and modulus of smoothness, and give the Stechkin-Marchaud-type inequalities for linear combination of Bernstein-Durrmeyer operators . Moreover, we obtain the inverse result of approximation for linear combination of Bernstein-Durrmeyer operators with . Meanwhile we unify and extend some previous results.展开更多
The aim of the present paper is to prove new equivalence results and Lp-stauration results on weighted simultaneous approximation by the method of Bernstein-Durrmeyer operators (including results in [7]). One of the m...The aim of the present paper is to prove new equivalence results and Lp-stauration results on weighted simultaneous approximation by the method of Bernstein-Durrmeyer operators (including results in [7]). One of the main tools and crucial estimates managing the converse results is given by a direct modified Vornorskaja theorem which uses the third order weighted modulus of smoothness.展开更多
The aim of the present paper is to prove direct and converse results for simultaneous approximation by modified Bernstein-Durrmeyer operators. A point-wise equivalence characterization of simultaneous approximation is...The aim of the present paper is to prove direct and converse results for simultaneous approximation by modified Bernstein-Durrmeyer operators. A point-wise equivalence characterization of simultaneous approximation is obtained.展开更多
New fractional operators, the COVID-19 model has been studied in this paper. By using different numericaltechniques and the time fractional parameters, the mechanical characteristics of the fractional order model arei...New fractional operators, the COVID-19 model has been studied in this paper. By using different numericaltechniques and the time fractional parameters, the mechanical characteristics of the fractional order model areidentified. The uniqueness and existence have been established. Themodel’sUlam-Hyers stability analysis has beenfound. In order to justify the theoretical results, numerical simulations are carried out for the presented methodin the range of fractional order to show the implications of fractional and fractal orders.We applied very effectivenumerical techniques to obtain the solutions of themodel and simulations. Also, we present conditions of existencefor a solution to the proposed epidemicmodel and to calculate the reproduction number in certain state conditionsof the analyzed dynamic system. COVID-19 fractional order model for the case of Wuhan, China, is offered foranalysis with simulations in order to determine the possible efficacy of Coronavirus disease transmission in theCommunity. For this reason, we employed the COVID-19 fractal fractional derivative model in the example ofWuhan, China, with the given beginning conditions. In conclusion, again the mathematical models with fractionaloperators can facilitate the improvement of decision-making for measures to be taken in the management of anepidemic situation.展开更多
Because of the features involved with their varied kernels,differential operators relying on convolution formulations have been acknowledged as effective mathematical resources for modeling real-world issues.In this p...Because of the features involved with their varied kernels,differential operators relying on convolution formulations have been acknowledged as effective mathematical resources for modeling real-world issues.In this paper,we constructed a stochastic fractional framework of measles spreading mechanisms with dual medication immunization considering the exponential decay and Mittag-Leffler kernels.In this approach,the overall population was separated into five cohorts.Furthermore,the descriptive behavior of the system was investigated,including prerequisites for the positivity of solutions,invariant domain of the solution,presence and stability of equilibrium points,and sensitivity analysis.We included a stochastic element in every cohort and employed linear growth and Lipschitz criteria to show the existence and uniqueness of solutions.Several numerical simulations for various fractional orders and randomization intensities are illustrated.展开更多
Fractional calculus has drawn more attentions of mathematicians and engineers in recent years.A lot of new fractional operators were used to handle various practical problems.In this article,we mainly study four new f...Fractional calculus has drawn more attentions of mathematicians and engineers in recent years.A lot of new fractional operators were used to handle various practical problems.In this article,we mainly study four new fractional operators,namely the CaputoFabrizio operator,the Atangana-Baleanu operator,the Sun-Hao-Zhang-Baleanu operator and the generalized Caputo type operator under the frame of the k-Prabhakar fractional integral operator.Usually,the theory of the k-Prabhakar fractional integral is regarded as a much broader than classical fractional operator.Here,we firstly give a series expansion of the k-Prabhakar fractional integral by means of the k-Riemann-Liouville integral.Then,a connection between the k-Prabhakar fractional integral and the four new fractional operators of the above mentioned was shown,respectively.In terms of the above analysis,we can obtain this a basic fact that it only needs to consider the k-Prabhakar fractional integral to cover these results from the four new fractional operators.展开更多
In this paper,we investigate sufficient and necessary conditions such that generalized Forelli-Rudin type operators T_(λ,τ,k),S_(λ,τ,k),Q_(λ,τ,k)and R_(λ,τ,k)are bounded between Lebesgue type spaces.In order t...In this paper,we investigate sufficient and necessary conditions such that generalized Forelli-Rudin type operators T_(λ,τ,k),S_(λ,τ,k),Q_(λ,τ,k)and R_(λ,τ,k)are bounded between Lebesgue type spaces.In order to prove the main results,we first give some bidirectional estimates for several typical integrals.展开更多
Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and stra...Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and strategies to assist them in realizing sustainable development.Because of the speculative character of human opinions,supplier selection frequently includes unreliable data,and the interval-valued Pythagorean fuzzy soft set(IVPFSS)provides an exceptional capacity to cope with excessive fuzziness,inconsistency,and inexactness through the decision-making procedure.The main goal of this study is to come up with new operational laws for interval-valued Pythagorean fuzzy soft numbers(IVPFSNs)and create two interaction operators-the intervalvalued Pythagorean fuzzy soft interaction weighted average(IVPFSIWA)and the interval-valued Pythagorean fuzzy soft interaction weighted geometric(IVPFSIWG)operators,and analyze their properties.These operators are highly advantageous in addressing uncertain problems by considering membership and non-membership values within intervals,providing a superior solution to other methods.Moreover,specialist judgments were calculated by the MCGDM technique,supporting the use of interaction AOs to regulate the interdependence and fundamental partiality of green supplier assessment aspects.Lastly,a statistical clarification of the planned method for green supplier selection is presented.展开更多
In this paper,we introduce the weighted multilinear p-adic Hardy operator and weighted multilinear p-adic Ces`aro operator,we also obtain the boundedness of these two operators on the product of p-adic Herz spaces and...In this paper,we introduce the weighted multilinear p-adic Hardy operator and weighted multilinear p-adic Ces`aro operator,we also obtain the boundedness of these two operators on the product of p-adic Herz spaces and p-adic Morrey-Herz spaces,the corresponding operator norms are also established in each case.Moreover,the boundedness of commutators of these two operators with symbols in central bounded mean oscillation spaces and Lipschitz spaces on p-adic Morrey-Herz spaces are also given.展开更多
Consider a pseudo-differential operator T_(a)f(x)=∫_(R^(n))e^(ix,ζ)a(x,ζ)f(ζ)dζwhere the symbol a is in the rough Hormander class L^(∞)S_(ρ)^(m)with m∈R andρ∈[0,1].In this note,when 1≤p≤2,if n(ρ-1)/p and ...Consider a pseudo-differential operator T_(a)f(x)=∫_(R^(n))e^(ix,ζ)a(x,ζ)f(ζ)dζwhere the symbol a is in the rough Hormander class L^(∞)S_(ρ)^(m)with m∈R andρ∈[0,1].In this note,when 1≤p≤2,if n(ρ-1)/p and a∈L^(∞)S_(ρ)^(m),then for any f∈S(R^(n))and x∈R^(n),we prove that M(T_(a)f)(x)≤C(M(|f|^(p))(x))^(1/p) where M is the Hardy-Littlewood maximal operator.Our theorem improves the known results and the bound on m is sharp,in the sense that n(ρ-1)/p can not be replaced by a larger constant.展开更多
Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes...Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances.展开更多
基金Supported by the NSF of P.R.China(10471130)the NSF of Zhejiang Province(Y604003)
文摘In the present paper, we find that the Bernstein-Durrmeyer operators, besides their better applications in approximation theory and some other fields, are good tools in constructing translation network. With the help of the de la Vallée properties of the Bernstein-Durrmeyer operators a sequence of translation network operators is constructed and its degree of approximation is dealt.
基金Supported by the Science Foundation of Zhejiang Province(Y604003)
文摘The paper is related to the norm estimate of Mercer kernel matrices. The lower and upper bound estimates of Rayleigh entropy numbers for some Mercer kernel matrices on [0, 1] × [0, 1] based on the Bernstein-Durrmeyer operator kernel are obtained, with which and the approximation property of the Bernstein-Durrmeyer operator the lower and upper bounds of the Rayleigh entropy number and the l2 -norm for general Mercer kernel matrices on [0, 1] x [0, 1] are provided.
文摘In the present paper, we establish direct and converse theorems for weight-ed Bernstein-Durrmeyer operators under weighted L^p-norm with Jacobi weight w(x)=x^a(1-x)β.All the results involved have no restriction a,β〈1-1/p,which indicates that the weighted Bemstein-Durrmeyer operators have some better approxi- mation properties than the usual Bernstein-Durrmeyer operators.
基金Supported by Foundation of Key Item of Science and Technology of Education Ministry of China (03142)Foundation of Higher School of Ningxia (JY2002107)Nature Science Foundation of Zhejiang Province(102002).
文摘As a generalization of the Bernstein-Durrmeyer operatora defined on the simplex, a class of general Bernstein-Durrmeyer operators is introduced. With the weighted moduli of smoothness as a metric, we prove a strong direct theorem and an inverse theorem of weak type for these operators by using a decom-position way. From the theorems the characterization of Lp approximation behavior is derived.
基金Supported by the National Natural Science Foundation of China (Grant No. 10871226)
文摘The paper deals with estimates of the covering number for some Mercer kernel Hilbert space with Bernstein-Durrmeyer operators. We first give estimates of l2- norm of Mercer kernel matrices reproducing by the kernelsK(α,β)(x,y):=∑∞k=0 Ck(α,β)(x)Qk(α,β)(y),where Qk(α,β) (x) are the Jacobi polynomials of order k on (0, 1 ), Ck(α,β) 〉 0 are real numbers, and from which give the lower and upper bounds of the covering number for some particular reproducing kernel Hilbert space reproduced by Kα,β (x, y).
文摘The modified Bernstein-Durrmeyer operators discussed in this paper are given by M_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt, where We will show,for 0<α<1 and 1≤p≤∞ M,f-f_p=O(n^-a)ω_Φ~2(f,t)_p=O(t^(2a)), |M_n f-f(x)|≤M(x(1-x)/n+1/_n2)~a/2ω(f,t)=O(t^a), where otherwise.
基金Supported by the 2007 Year School Grade Plan Item of Inner Mongolia University for Nationalities(MDX2007030)
文摘With the weighted modulus of smoothness as a metric,we prove the direct and the inverse theorems of approximation by Bernstein-Durrmeyer operators in LBa M spaces. Especially an approximation equivalent theorem of the operators is also obtained.
基金supported by Zhejiang Provincial Foundation of China
文摘We modify Bernstein-Durrmeyer operators by means of digonal matarix which overeome a difficulty in extending a Berens-Lorentz result to the Bernstein-Durrmeyer operators for second order of smoothness. The direct and converse theorems for these operators in L_p are also presented by Ditzian-Totik, modulus of smoothness.
文摘The concern of this paper is to study local approximation properties of the Bernstein-Durrmeyer operators Mn. We derive the complete asymptotic expansion of the operators Mn and their derivatives as n tends to infinity. It turns out that the appropriate representation is a series of reciprocal factorials. All coefficients are calculated explicitly in a very concise form. Our main theorem contains several earlier partial results as special cases. Finally, we obtain a Voronovskaja-type formula for simultaneous approximation by linear combinations of Mn,
文摘In this paper, we use the equivalence relation between K-functional and modulus of smoothness, and give the Stechkin-Marchaud-type inequalities for linear combination of Bernstein-Durrmeyer operators . Moreover, we obtain the inverse result of approximation for linear combination of Bernstein-Durrmeyer operators with . Meanwhile we unify and extend some previous results.
文摘The aim of the present paper is to prove new equivalence results and Lp-stauration results on weighted simultaneous approximation by the method of Bernstein-Durrmeyer operators (including results in [7]). One of the main tools and crucial estimates managing the converse results is given by a direct modified Vornorskaja theorem which uses the third order weighted modulus of smoothness.
基金Supported by Natural Science Foundation of Zhejiang Province(102002)
文摘The aim of the present paper is to prove direct and converse results for simultaneous approximation by modified Bernstein-Durrmeyer operators. A point-wise equivalence characterization of simultaneous approximation is obtained.
基金Lucian Blaga University of Sibiu&Hasso Plattner Foundation Research Grants LBUS-IRG-2020-06.
文摘New fractional operators, the COVID-19 model has been studied in this paper. By using different numericaltechniques and the time fractional parameters, the mechanical characteristics of the fractional order model areidentified. The uniqueness and existence have been established. Themodel’sUlam-Hyers stability analysis has beenfound. In order to justify the theoretical results, numerical simulations are carried out for the presented methodin the range of fractional order to show the implications of fractional and fractal orders.We applied very effectivenumerical techniques to obtain the solutions of themodel and simulations. Also, we present conditions of existencefor a solution to the proposed epidemicmodel and to calculate the reproduction number in certain state conditionsof the analyzed dynamic system. COVID-19 fractional order model for the case of Wuhan, China, is offered foranalysis with simulations in order to determine the possible efficacy of Coronavirus disease transmission in theCommunity. For this reason, we employed the COVID-19 fractal fractional derivative model in the example ofWuhan, China, with the given beginning conditions. In conclusion, again the mathematical models with fractionaloperators can facilitate the improvement of decision-making for measures to be taken in the management of anepidemic situation.
文摘Because of the features involved with their varied kernels,differential operators relying on convolution formulations have been acknowledged as effective mathematical resources for modeling real-world issues.In this paper,we constructed a stochastic fractional framework of measles spreading mechanisms with dual medication immunization considering the exponential decay and Mittag-Leffler kernels.In this approach,the overall population was separated into five cohorts.Furthermore,the descriptive behavior of the system was investigated,including prerequisites for the positivity of solutions,invariant domain of the solution,presence and stability of equilibrium points,and sensitivity analysis.We included a stochastic element in every cohort and employed linear growth and Lipschitz criteria to show the existence and uniqueness of solutions.Several numerical simulations for various fractional orders and randomization intensities are illustrated.
基金supported by the NSFC(11971475)the Natural Science Foundation of Jiangsu Province(BK20230708)+2 种基金the Natural Science Foundation for the Universities in Jiangsu Province(23KJB110003)Geng's research was supported by the NSFC(11201041)the China Postdoctoral Science Foundation(2019M651765)。
文摘Fractional calculus has drawn more attentions of mathematicians and engineers in recent years.A lot of new fractional operators were used to handle various practical problems.In this article,we mainly study four new fractional operators,namely the CaputoFabrizio operator,the Atangana-Baleanu operator,the Sun-Hao-Zhang-Baleanu operator and the generalized Caputo type operator under the frame of the k-Prabhakar fractional integral operator.Usually,the theory of the k-Prabhakar fractional integral is regarded as a much broader than classical fractional operator.Here,we firstly give a series expansion of the k-Prabhakar fractional integral by means of the k-Riemann-Liouville integral.Then,a connection between the k-Prabhakar fractional integral and the four new fractional operators of the above mentioned was shown,respectively.In terms of the above analysis,we can obtain this a basic fact that it only needs to consider the k-Prabhakar fractional integral to cover these results from the four new fractional operators.
基金supported by the Natural Science Foundation of Hunan Province of China(2022JJ30369)the Education Department Important Foundation of Hunan Province in China(23A0095)。
文摘In this paper,we investigate sufficient and necessary conditions such that generalized Forelli-Rudin type operators T_(λ,τ,k),S_(λ,τ,k),Q_(λ,τ,k)and R_(λ,τ,k)are bounded between Lebesgue type spaces.In order to prove the main results,we first give some bidirectional estimates for several typical integrals.
基金funded by King Saud University,Riyadh,Saudi Arabia.
文摘Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and strategies to assist them in realizing sustainable development.Because of the speculative character of human opinions,supplier selection frequently includes unreliable data,and the interval-valued Pythagorean fuzzy soft set(IVPFSS)provides an exceptional capacity to cope with excessive fuzziness,inconsistency,and inexactness through the decision-making procedure.The main goal of this study is to come up with new operational laws for interval-valued Pythagorean fuzzy soft numbers(IVPFSNs)and create two interaction operators-the intervalvalued Pythagorean fuzzy soft interaction weighted average(IVPFSIWA)and the interval-valued Pythagorean fuzzy soft interaction weighted geometric(IVPFSIWG)operators,and analyze their properties.These operators are highly advantageous in addressing uncertain problems by considering membership and non-membership values within intervals,providing a superior solution to other methods.Moreover,specialist judgments were calculated by the MCGDM technique,supporting the use of interaction AOs to regulate the interdependence and fundamental partiality of green supplier assessment aspects.Lastly,a statistical clarification of the planned method for green supplier selection is presented.
文摘In this paper,we introduce the weighted multilinear p-adic Hardy operator and weighted multilinear p-adic Ces`aro operator,we also obtain the boundedness of these two operators on the product of p-adic Herz spaces and p-adic Morrey-Herz spaces,the corresponding operator norms are also established in each case.Moreover,the boundedness of commutators of these two operators with symbols in central bounded mean oscillation spaces and Lipschitz spaces on p-adic Morrey-Herz spaces are also given.
基金Supported by the National Natural Science Foundation of China(11871436,12071437)。
文摘Consider a pseudo-differential operator T_(a)f(x)=∫_(R^(n))e^(ix,ζ)a(x,ζ)f(ζ)dζwhere the symbol a is in the rough Hormander class L^(∞)S_(ρ)^(m)with m∈R andρ∈[0,1].In this note,when 1≤p≤2,if n(ρ-1)/p and a∈L^(∞)S_(ρ)^(m),then for any f∈S(R^(n))and x∈R^(n),we prove that M(T_(a)f)(x)≤C(M(|f|^(p))(x))^(1/p) where M is the Hardy-Littlewood maximal operator.Our theorem improves the known results and the bound on m is sharp,in the sense that n(ρ-1)/p can not be replaced by a larger constant.
基金the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(Grant Number IMSIU-RP23030).
文摘Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances.