期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Quantum theory on protein folding 被引量:4
1
作者 LUO LiaoFu 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2014年第3期458-468,共11页
The conformational change of biological macromolecule is investigated from the point of quantum transition.A quantum theory on protein folding is proposed.Compared with other dynamical variables such as mobile electro... The conformational change of biological macromolecule is investigated from the point of quantum transition.A quantum theory on protein folding is proposed.Compared with other dynamical variables such as mobile electrons,chemical bonds and stretching-bending vibrations the molecular torsion has the lowest energy and can be looked as the slow variable of the system.Simultaneously,from the multi-minima property of torsion potential the local conformational states are well defined.Following the idea that the slow variables slave the fast ones and using the nonadiabaticity operator method we deduce the Hamiltonian describing conformational change.It is shown that the influence of fast variables on the macromolecule can fully be taken into account through a phase transformation of slow variable wave function.Starting from the conformation-transition Hamiltonian the nonradiative matrix element was calculated and a general formulas for protein folding rate was deduced.The analytical form of the formula was utilized to study the temperature dependence of protein folding rate and the curious non-Arrhenius temperature relation was interpreted.By using temperature dependence data the multi-torsion correlation was studied.The decoherence time of quantum torsion state is estimated.The proposed folding rate formula gives a unifying approach for the study of a large class problems of biological conformational change. 展开更多
关键词 conformational change of macromolecule quantum transition torsion potential slow variable nonadiabaticity opera-tor berry's phase quantum decoherence time protein folding
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部