A general technique to obtain simple analytic approximations for the first kind of modified Bessel functions. The general procedure is shown, and the parameter determination is explained through the applications to th...A general technique to obtain simple analytic approximations for the first kind of modified Bessel functions. The general procedure is shown, and the parameter determination is explained through the applications to this particular case I1/6(x)and I1/7(x). In this way, it shows how to apply the technique to any particular orderν, in order to obtain an approximation valid for any positive value of the variable x. In the present method power series and asymptotic expansion are simultaneously used. The technique is an extension of the multipoint quasirational approximation method, MPQA. The main idea is to look for a bridge function between the power and asymptotic expansion of the I1/6(x), and similar procedure for I1/7(x). To perform this, rational functions are combined with hyperbolic ones and fractional powers. The number of parameters to be determined for each case is four. The maximum relative errors are 0.0049 for ν=1/6, and 0.0047 for ν=7. However, these relative errors decrease outside of the small region of the variables, wherein the maximum relative errors are reached. There is a clear advantage of this procedure compared with any other ones.展开更多
In this paper,by choosing some appropriate test functions,we prove the Weyl’s lemma for triharmonic functions based on the new type of mean value formulas.
For a set S of real numbers, we introduce the concept of S-almost automorphic functions valued in a Banach space. It generalizes in particular the space of Z-almost automorphic functions. Considering the space of S-al...For a set S of real numbers, we introduce the concept of S-almost automorphic functions valued in a Banach space. It generalizes in particular the space of Z-almost automorphic functions. Considering the space of S-almost automorphic functions, we give sufficient conditions of the existence and uniqueness of almost automorphic solutions of a differential equation with a piecewise constant argument of generalized type. This is done using the Banach fixed point theorem.展开更多
In expansions of arbitrary functions in Bessel functions or Spherical Bessel functions, a dual partner set of polynomials play a role. For the Bessel functions, these are the Chebyshev polynomials of first kind and fo...In expansions of arbitrary functions in Bessel functions or Spherical Bessel functions, a dual partner set of polynomials play a role. For the Bessel functions, these are the Chebyshev polynomials of first kind and for the Spherical Bessel functions the Legendre polynomials. These two sets of functions appear in many formulas of the expansion and in the completeness and (bi)-orthogonality relations. The analogy to expansions of functions in Taylor series and in moment series and to expansions in Hermite functions is elaborated. Besides other special expansion, we find the expansion of Bessel functions in Spherical Bessel functions and their inversion and of Chebyshev polynomials of first kind in Legendre polynomials and their inversion. For the operators which generate the Spherical Bessel functions from a basic Spherical Bessel function, the normally ordered (or disentangled) form is found.展开更多
The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel micr...The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel microelectrode arrays(MEAs)can rapidly and precisely locate the STN,which is important for precise stimulation.In this paper,16-channel MEAs modified with multiwalled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(MWCNT/PEDOT:PSS)nanocomposites were designed and fabricated,and the accurate and rapid identification of the STN in PD rats was performed using detection sites distributed at different brain depths.These results showed that nuclei in 6-hydroxydopamine hydrobromide(6-OHDA)-lesioned brains discharged more intensely than those in unlesioned brains.In addition,the MEA simultaneously acquired neural signals from both the STN and the upper or lower boundary nuclei of the STN.Moreover,higher values of spike firing rate,spike amplitude,local field potential(LFP)power,and beta oscillations were detected in the STN of the 6-OHDA-lesioned brain,and may therefore be biomarkers of STN localization.Compared with the STNs of unlesioned brains,the power spectral density of spikes and LFPs synchronously decreased in the delta band and increased in the beta band of 6-OHDA-lesioned brains.This may be a cause of sleep and motor disorders associated with PD.Overall,this work describes a new cellular-level localization and detection method and provides a tool for future studies of deep brain nuclei.展开更多
A generalized form of the error function, Gp(x)=pΓ(1/p)∫0xe−tpdt, which is directly associated with the gamma function, is evaluated for arbitrary real values of p>1and 0x≤+∞by employing a fast-converging power...A generalized form of the error function, Gp(x)=pΓ(1/p)∫0xe−tpdt, which is directly associated with the gamma function, is evaluated for arbitrary real values of p>1and 0x≤+∞by employing a fast-converging power series expansion developed in resolving the so-called Grandi’s paradox. Comparisons with accurate tabulated values for well-known cases such as the error function are presented using the expansions truncated at various orders.展开更多
The solution of Poisson’s Equation plays an important role in many areas, including modeling high-intensity and high-brightness beams in particle accelerators. For the computational domain with a large aspect ratio, ...The solution of Poisson’s Equation plays an important role in many areas, including modeling high-intensity and high-brightness beams in particle accelerators. For the computational domain with a large aspect ratio, the integrated Green’s function method has been adopted to solve the 3D Poisson equation subject to open boundary conditions. In this paper, we report on the efficient implementation of this method, which can save more than a factor of 50 computing time compared with the direct brute force implementation and its improvement under certain extreme conditions.展开更多
In this paper,we obtain Green’s functions of two-dimensional(2D)piezoelectric quasicrystal(PQC)in half-space and bimaterials.Based on the elastic theory of QCs,the Stroh formalism is used to derive the general soluti...In this paper,we obtain Green’s functions of two-dimensional(2D)piezoelectric quasicrystal(PQC)in half-space and bimaterials.Based on the elastic theory of QCs,the Stroh formalism is used to derive the general solutions of displacements and stresses.Then,we obtain the analytical solutions of half-space and bimaterial Green’s functions.Besides,the interfacial Green’s function for bimaterials is also obtained in the analytical form.Before numerical studies,a comparative study is carried out to validate the present solutions.Typical numerical examples are performed to investigate the effects of multi-physics loadings such as the line force,the line dislocation,the line charge,and the phason line force.As a result,the coupling effect among the phonon field,the phason field,and the electric field is prominent,and the butterfly-shaped contours are characteristic in 2D PQCs.In addition,the changes of material parameters cause variations in physical quantities to a certain degree.展开更多
This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones a...This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.展开更多
In the present paper, we derive some third-order differential subordination results for analytic functions in the open unit disk, using the operator Bcκf by means of normalized form of the generalized Bessel function...In the present paper, we derive some third-order differential subordination results for analytic functions in the open unit disk, using the operator Bcκf by means of normalized form of the generalized Bessel functions of the first kind, which is defined as z(Bκ+1^c f(z))′= κBκ^c f(z)-(κ- 1)Bκ+1^c f(z),where b, c, p ∈ C and κ = p +(b + 1)/2 ∈ C / Z0^-(Z0^-= {0,-1,-2, … }). The results are obtained by considering suitable classes of admissible functions. Various known or new special cases of our main results are also pointed out.展开更多
The behavior of the zeros in finite Taylor series approximations of the Riemann Xi function (to the zeta function), of modified Bessel functions and of the Gaussian (bell) function is investigated and illustrated in t...The behavior of the zeros in finite Taylor series approximations of the Riemann Xi function (to the zeta function), of modified Bessel functions and of the Gaussian (bell) function is investigated and illustrated in the complex domain by pictures. It can be seen how the zeros in finite approximations approach to the genuine zeros in the transition to higher-order approximation and in case of the Gaussian (bell) function that they go with great uniformity to infinity in the complex plane. A limiting transition from the modified Bessel functions to a Gaussian function is discussed and represented in pictures. In an Appendix a new building stone to a full proof of the Riemann hypothesis using the Second mean-value theorem is presented.展开更多
In this paper the axially symmetric, radial vibration frequency equation of multilayered cylinders made of the same materials in plain strain state is studied. It is proved in this paper that the frequency equation of...In this paper the axially symmetric, radial vibration frequency equation of multilayered cylinders made of the same materials in plain strain state is studied. It is proved in this paper that the frequency equation of:several contact hallow cylinders can be replaced by the frequency equation of a single hollow cylinder, so that the solving process is greatly simplified. Some recursion formulae of Bessel functions are derived from such practical problems as well.展开更多
The present paper deals with the evaluation of the q-Analogues of Laplece transforms of a product of basic analogues of q2-special functions. We apply these transforms to three families of q-Bessel functions. Several ...The present paper deals with the evaluation of the q-Analogues of Laplece transforms of a product of basic analogues of q2-special functions. We apply these transforms to three families of q-Bessel functions. Several special cases have been deducted.展开更多
This paper is devoted to a new approach—the dynamic response of Soil-Structure System (SSS), the far field of which is discretized by decay or mapped elastodynamic infinite elements, based on scaling modified Bessel ...This paper is devoted to a new approach—the dynamic response of Soil-Structure System (SSS), the far field of which is discretized by decay or mapped elastodynamic infinite elements, based on scaling modified Bessel shape functions are to be calculated. These elements are appropriate for Soil-Structure Interaction problems, solved in time or frequency domain and can be treated as a new form of the recently proposed elastodynamic infinite elements with united shape functions (EIEUSF) infinite elements. Here the time domain form of the equations of motion is demonstrated and used in the numerical example. In the paper only the formulation of 2D horizontal type infinite elements (HIE) is used, but by similar techniques 2D vertical (VIE) and 2D corner (CIE) infinite elements can also be added. Continuity along the artificial boundary (the line between finite and infinite elements) is discussed as well and the application of the proposed elastodynamical infinite elements in the Finite element method is explained in brief. A numerical example shows the computational efficiency and accuracy of the proposed infinite elements, based on scaling Bessel shape functions.展开更多
In the present work, a unification of certain functions of mathematical physics is proposed and its properties are studied. The proposed function unifies Lommel function, Struve function, the Bessel-Maitland function ...In the present work, a unification of certain functions of mathematical physics is proposed and its properties are studied. The proposed function unifies Lommel function, Struve function, the Bessel-Maitland function and its generalization, Dotsenko function, generalized Mittag-Leffler function etc. The properties include absolute and uniform convergence, differential recurrence relation, integral representations in the form of Euler-Beta transform, Mellin-Barnes transform, Laplace transform and Whittaker transform. The special cases namely the generalized hypergeometric function, generalized Laguerre polynomial, Fox H-function etc. are also obtained.展开更多
Based on the integral representation of the Bessel functions and the generating function of the Tricomi function, an analytical expression of the Wigner distribution function (WDF) for a coherent or partially cohere...Based on the integral representation of the Bessel functions and the generating function of the Tricomi function, an analytical expression of the Wigner distribution function (WDF) for a coherent or partially coherent Bessel Gaussian beam is presented. The reduced two-dimensional WDFs are also demonstrated graphically, which reveals the dependence of the reduced WDFs on the beam parameters.展开更多
The paper is devoted to formulations of decay and mapped elastodynamic infinite elements, based on modified Bessel shape functions. These elements are appropriate for Soil-Structure Interaction (SSI) problems, solve...The paper is devoted to formulations of decay and mapped elastodynamic infinite elements, based on modified Bessel shape functions. These elements are appropriate for Soil-Structure Interaction (SSI) problems, solved in time or frequency domain and can be treated as a new form of the recently proposed Elastodynamic Infinite Elements with United Shape Functions (EIEUSF) infinite elements. The formulation of 2D Horizontal type Infinite Elements (HIE) is demonstrated here, but by similar techniques 2D Vertical (VIE) and 2D Comer (CIE) Infinite Elements can also be formulated. Using elastodynamic infinite elements is the easier and appropriate way to achieve an adequate simulation including basic aspects of Soil-Structure Interaction. Continuity along the artificial boundary (the line between finite and infinite elements) is discussed as well and the application of the proposed elastodynamic infinite elements in the Finite Element Method (FEM) is explained in brief. Finally, a numerical example shows the computational efficiency of the proposed infinite elements.展开更多
文摘A general technique to obtain simple analytic approximations for the first kind of modified Bessel functions. The general procedure is shown, and the parameter determination is explained through the applications to this particular case I1/6(x)and I1/7(x). In this way, it shows how to apply the technique to any particular orderν, in order to obtain an approximation valid for any positive value of the variable x. In the present method power series and asymptotic expansion are simultaneously used. The technique is an extension of the multipoint quasirational approximation method, MPQA. The main idea is to look for a bridge function between the power and asymptotic expansion of the I1/6(x), and similar procedure for I1/7(x). To perform this, rational functions are combined with hyperbolic ones and fractional powers. The number of parameters to be determined for each case is four. The maximum relative errors are 0.0049 for ν=1/6, and 0.0047 for ν=7. However, these relative errors decrease outside of the small region of the variables, wherein the maximum relative errors are reached. There is a clear advantage of this procedure compared with any other ones.
基金Supported by National Natural Science Foundation of China(Grant Nos.11801006 and 12071489).
文摘In this paper,by choosing some appropriate test functions,we prove the Weyl’s lemma for triharmonic functions based on the new type of mean value formulas.
文摘For a set S of real numbers, we introduce the concept of S-almost automorphic functions valued in a Banach space. It generalizes in particular the space of Z-almost automorphic functions. Considering the space of S-almost automorphic functions, we give sufficient conditions of the existence and uniqueness of almost automorphic solutions of a differential equation with a piecewise constant argument of generalized type. This is done using the Banach fixed point theorem.
文摘In expansions of arbitrary functions in Bessel functions or Spherical Bessel functions, a dual partner set of polynomials play a role. For the Bessel functions, these are the Chebyshev polynomials of first kind and for the Spherical Bessel functions the Legendre polynomials. These two sets of functions appear in many formulas of the expansion and in the completeness and (bi)-orthogonality relations. The analogy to expansions of functions in Taylor series and in moment series and to expansions in Hermite functions is elaborated. Besides other special expansion, we find the expansion of Bessel functions in Spherical Bessel functions and their inversion and of Chebyshev polynomials of first kind in Legendre polynomials and their inversion. For the operators which generate the Spherical Bessel functions from a basic Spherical Bessel function, the normally ordered (or disentangled) form is found.
基金funded by the National Natural Science Foundation of China(Nos.L2224042,T2293731,62121003,61960206012,61973292,62171434,61975206,and 61971400)the Frontier Interdisciplinary Project of the Chinese Academy of Sciences(No.XK2022XXC003)+2 种基金the National Key Research and Development Program of China(Nos.2022YFC2402501 and 2022YFB3205602)the Major Program of Scientific and Technical Innovation 2030(No.2021ZD02016030)the Scientific Instrument Developing Project of he Chinese Academy of Sciences(No.GJJSTD20210004).
文摘The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel microelectrode arrays(MEAs)can rapidly and precisely locate the STN,which is important for precise stimulation.In this paper,16-channel MEAs modified with multiwalled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(MWCNT/PEDOT:PSS)nanocomposites were designed and fabricated,and the accurate and rapid identification of the STN in PD rats was performed using detection sites distributed at different brain depths.These results showed that nuclei in 6-hydroxydopamine hydrobromide(6-OHDA)-lesioned brains discharged more intensely than those in unlesioned brains.In addition,the MEA simultaneously acquired neural signals from both the STN and the upper or lower boundary nuclei of the STN.Moreover,higher values of spike firing rate,spike amplitude,local field potential(LFP)power,and beta oscillations were detected in the STN of the 6-OHDA-lesioned brain,and may therefore be biomarkers of STN localization.Compared with the STNs of unlesioned brains,the power spectral density of spikes and LFPs synchronously decreased in the delta band and increased in the beta band of 6-OHDA-lesioned brains.This may be a cause of sleep and motor disorders associated with PD.Overall,this work describes a new cellular-level localization and detection method and provides a tool for future studies of deep brain nuclei.
文摘A generalized form of the error function, Gp(x)=pΓ(1/p)∫0xe−tpdt, which is directly associated with the gamma function, is evaluated for arbitrary real values of p>1and 0x≤+∞by employing a fast-converging power series expansion developed in resolving the so-called Grandi’s paradox. Comparisons with accurate tabulated values for well-known cases such as the error function are presented using the expansions truncated at various orders.
文摘The solution of Poisson’s Equation plays an important role in many areas, including modeling high-intensity and high-brightness beams in particle accelerators. For the computational domain with a large aspect ratio, the integrated Green’s function method has been adopted to solve the 3D Poisson equation subject to open boundary conditions. In this paper, we report on the efficient implementation of this method, which can save more than a factor of 50 computing time compared with the direct brute force implementation and its improvement under certain extreme conditions.
基金the National Natural Science Foundation of China(Nos.11972365 and 12102458)。
文摘In this paper,we obtain Green’s functions of two-dimensional(2D)piezoelectric quasicrystal(PQC)in half-space and bimaterials.Based on the elastic theory of QCs,the Stroh formalism is used to derive the general solutions of displacements and stresses.Then,we obtain the analytical solutions of half-space and bimaterial Green’s functions.Besides,the interfacial Green’s function for bimaterials is also obtained in the analytical form.Before numerical studies,a comparative study is carried out to validate the present solutions.Typical numerical examples are performed to investigate the effects of multi-physics loadings such as the line force,the line dislocation,the line charge,and the phason line force.As a result,the coupling effect among the phonon field,the phason field,and the electric field is prominent,and the butterfly-shaped contours are characteristic in 2D PQCs.In addition,the changes of material parameters cause variations in physical quantities to a certain degree.
文摘This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.
基金partly supported by the Natural Science Foundation of China(11271045)the Higher School Doctoral Foundation of China(20100003110004)+2 种基金the Natural Science Foundation of Inner Mongolia of China(2010MS0117)athe Higher School Foundation of Inner Mongolia of China(NJZY13298)the Commission for the Scientific Research Projects of Kafkas Univertsity(2012-FEF-30)
文摘In the present paper, we derive some third-order differential subordination results for analytic functions in the open unit disk, using the operator Bcκf by means of normalized form of the generalized Bessel functions of the first kind, which is defined as z(Bκ+1^c f(z))′= κBκ^c f(z)-(κ- 1)Bκ+1^c f(z),where b, c, p ∈ C and κ = p +(b + 1)/2 ∈ C / Z0^-(Z0^-= {0,-1,-2, … }). The results are obtained by considering suitable classes of admissible functions. Various known or new special cases of our main results are also pointed out.
文摘The behavior of the zeros in finite Taylor series approximations of the Riemann Xi function (to the zeta function), of modified Bessel functions and of the Gaussian (bell) function is investigated and illustrated in the complex domain by pictures. It can be seen how the zeros in finite approximations approach to the genuine zeros in the transition to higher-order approximation and in case of the Gaussian (bell) function that they go with great uniformity to infinity in the complex plane. A limiting transition from the modified Bessel functions to a Gaussian function is discussed and represented in pictures. In an Appendix a new building stone to a full proof of the Riemann hypothesis using the Second mean-value theorem is presented.
文摘In this paper the axially symmetric, radial vibration frequency equation of multilayered cylinders made of the same materials in plain strain state is studied. It is proved in this paper that the frequency equation of:several contact hallow cylinders can be replaced by the frequency equation of a single hollow cylinder, so that the solving process is greatly simplified. Some recursion formulae of Bessel functions are derived from such practical problems as well.
文摘The present paper deals with the evaluation of the q-Analogues of Laplece transforms of a product of basic analogues of q2-special functions. We apply these transforms to three families of q-Bessel functions. Several special cases have been deducted.
文摘This paper is devoted to a new approach—the dynamic response of Soil-Structure System (SSS), the far field of which is discretized by decay or mapped elastodynamic infinite elements, based on scaling modified Bessel shape functions are to be calculated. These elements are appropriate for Soil-Structure Interaction problems, solved in time or frequency domain and can be treated as a new form of the recently proposed elastodynamic infinite elements with united shape functions (EIEUSF) infinite elements. Here the time domain form of the equations of motion is demonstrated and used in the numerical example. In the paper only the formulation of 2D horizontal type infinite elements (HIE) is used, but by similar techniques 2D vertical (VIE) and 2D corner (CIE) infinite elements can also be added. Continuity along the artificial boundary (the line between finite and infinite elements) is discussed as well and the application of the proposed elastodynamical infinite elements in the Finite element method is explained in brief. A numerical example shows the computational efficiency and accuracy of the proposed infinite elements, based on scaling Bessel shape functions.
文摘In the present work, a unification of certain functions of mathematical physics is proposed and its properties are studied. The proposed function unifies Lommel function, Struve function, the Bessel-Maitland function and its generalization, Dotsenko function, generalized Mittag-Leffler function etc. The properties include absolute and uniform convergence, differential recurrence relation, integral representations in the form of Euler-Beta transform, Mellin-Barnes transform, Laplace transform and Whittaker transform. The special cases namely the generalized hypergeometric function, generalized Laguerre polynomial, Fox H-function etc. are also obtained.
文摘Based on the integral representation of the Bessel functions and the generating function of the Tricomi function, an analytical expression of the Wigner distribution function (WDF) for a coherent or partially coherent Bessel Gaussian beam is presented. The reduced two-dimensional WDFs are also demonstrated graphically, which reveals the dependence of the reduced WDFs on the beam parameters.
文摘The paper is devoted to formulations of decay and mapped elastodynamic infinite elements, based on modified Bessel shape functions. These elements are appropriate for Soil-Structure Interaction (SSI) problems, solved in time or frequency domain and can be treated as a new form of the recently proposed Elastodynamic Infinite Elements with United Shape Functions (EIEUSF) infinite elements. The formulation of 2D Horizontal type Infinite Elements (HIE) is demonstrated here, but by similar techniques 2D Vertical (VIE) and 2D Comer (CIE) Infinite Elements can also be formulated. Using elastodynamic infinite elements is the easier and appropriate way to achieve an adequate simulation including basic aspects of Soil-Structure Interaction. Continuity along the artificial boundary (the line between finite and infinite elements) is discussed as well and the application of the proposed elastodynamic infinite elements in the Finite Element Method (FEM) is explained in brief. Finally, a numerical example shows the computational efficiency of the proposed infinite elements.