Hospitality industry and hotels are considered to waste a lot of food.This research aims to focus on food waste management in luxury hotels by investigating three luxury hotels in Budapest(Hungary).The investigation f...Hospitality industry and hotels are considered to waste a lot of food.This research aims to focus on food waste management in luxury hotels by investigating three luxury hotels in Budapest(Hungary).The investigation focuses on qualitative methods,eleven interviews and observations were made from September to December 2018.Results show that in luxury hotels the main challenge is to ensure the correct balance between 5*experience and minimizing food waste.It was found that kitchen,breakfast open-buffet and staff canteen are among the leading causes of food waste,generating even higher food waste compared to conferences,banquets,orála carte options.While a broad range of practices exist that are believed to minimize the food waste of buffets,most of the luxury hotels are only implementing a small ratio of such practices and are only in the beginning of the planning phase to expand their practices in this regard.展开更多
Approaches to the artificial impoundment and theoretical design of sedimentation retention basin are reviewed with particular attention to best management practice(BMP) to control agriculture and surface runoff. Sedim...Approaches to the artificial impoundment and theoretical design of sedimentation retention basin are reviewed with particular attention to best management practice(BMP) to control agriculture and surface runoff. Sediments retention basins are the small version of farm pond used where a criteria of farm pond is not met. Such basin traps the pollutants and suspended solids prior to entry into streams and lakes. The study is focused with special reference to the assessment and control of non point source pollution(NPSP) from the sub basin area of Tai Lake in the Xishan County of Wuxi City of China. The author suggested two different approaches to conduct this study including theoretical design for sedimentation retention basin and computation of flow, sediment transport and deposition during the artificial impoundment of retention basin for BMP's utilization. Theoretical design will provide a useful function as a first line defense against the movement of sediments and transport of pollutants into the Tai Lake while the assessment of sediments deposition will help to make its proper use and periodic cleanup.展开更多
Urbanization causes hydrological change and increases stormwater runoff volumes, leading to flooding, erosion, and the degradation of instream ecosystem health. Best management practices (BMPs), like detention ponds...Urbanization causes hydrological change and increases stormwater runoff volumes, leading to flooding, erosion, and the degradation of instream ecosystem health. Best management practices (BMPs), like detention ponds and infiltration trenches, have been widely used to control flood runoff events for the past decade. However, low impact development (LID) options have been proposed as an alternative approach to better mimic the natural flow regime by using decentralized designs to control stormwater runoff at the source, rather than at a centralized location in the watershed. For highly urbanized areas, LID stormwater management practices such as bioretention cells and porous pavements can be used to retrofit existing infrastructure and reduce runoff volumes and peak flows. This paper describes a modeling approach to incorporate these LID practices and the two BMPs of detention ponds and infiltration trenches in an existing hydrological model to estimate the impacts of BMPs and LID practices on the surface runoff. The modeling approach has been used in a parking lot located in Lenexa, Kansas, USA, to predict hydrological performance of BMPs and LID practices. A performance indicator system including the flow duration curve, peak flow frequency exceedance curve, and runoff coefficient have been developed in an attempt to represent impacts of BMPs and LID practices on the entire spectrum of the runoff regime. Results demonstrate that use of these BMPs and LID practices leads to significant stormwater control for small rainfall events and less control for flood events.展开更多
Water quality,flooding risk,and water consumption in urban areas are emerging issues.Urban impervious surfaces increase stormwater runoff,affecting ecosystems and leading to hydrogeological instability and flooding ri...Water quality,flooding risk,and water consumption in urban areas are emerging issues.Urban impervious surfaces increase stormwater runoff,affecting ecosystems and leading to hydrogeological instability and flooding risk.Sustainable urban design strategies can contribute to counteract the negative impact of anthropic activities both at city-scale and global scale.Green and Blue Infrastructure(GBI)approaches,in particular,are an alternative to stormwater traditional management.In Europe,Sustainable Drainage System implementation copes with impervious surfaces to achieve water quality,amenity,and biodiversity increase.Best Management Practices,developed mainly in the USA,focus on specific measures for sustainable stormwater treatment.Water Sensitive Urban Design,spread in Australia and England,also aims to minimise the impact of developed areas preventing flood risk,limiting water consumption and enhancing environmental quality.In the USA and Canada,Low Impact Development offers design strategies to manage runoff and deliver structural practices to mimic predevelopment processes of infiltration,filtration and detention.展开更多
This article reviews and provides evaluation guidelines for six major storm water best management practices includingbioretention areas, grassed swales/fi lter strips, infi ltration trenches, porous pavement, rain bar...This article reviews and provides evaluation guidelines for six major storm water best management practices includingbioretention areas, grassed swales/fi lter strips, infi ltration trenches, porous pavement, rain barrels and wet detentionponds. A detailed table allows for quick and easy design comparisons, including a separate table which allows forsite specifi c cost comparisons. A logic diagram is provided as a basic tool for screening the most feasible managementpractice.展开更多
Biomass accumulation and partitioning into different plant parts is a dynamic process during the plant growing period, which is influenced by crop management and climate factors. Adequate knowledge of biomass partitio...Biomass accumulation and partitioning into different plant parts is a dynamic process during the plant growing period, which is influenced by crop management and climate factors. Adequate knowledge of biomass partitioning is important to manage the crops to gain maximum partitioning of assimilates into plant parts of economic significance, i.e. tubers in potato. This study was conducted using two potato cultivars grown in a sandy soil with center pivot irrigation under full irrigation (FI;irrigation to replenish 100% of water loss by evapotranspiration [ET]) and deficit irrigation (DI;replenish only 80% ET) and two nitrogen(N) rates (pre-plant + in-seasonN rates of 56 + 112 or 168 + 336 kg/ha). Plant samples were taken on 22, 44, 66, and 98 days after seedling emergence (DAE). With high N rate, tuber biomass of ‘Umatilla Russet’ cultivar in relation to total plant biomass varied from 23% - 88% and 25% - 86% over 22 to 98 DAE for the FI and DI treatments, respectively. The corresponding partitioning ranges were 30% - 93% and 38% - 93% at the low N rate. With respect to the‘Ranger Russet’ cultivar, biomass partitioning to tubers ranged from 36% - 82% and 23% - 84% for the FI and DI, respectively, at the high N rate, and 29% - 87% and 39% - 95% at the low N rate. Overall, this study demonstrated that within the range of N rate and irrigation treatments the biomass portioning into tubers was largely similar in both cultivars.展开更多
The use of good practices (GP) can improve the technical quality and, as a consequence, the outcome of the Strategic Environmental Assessment (SEA) process, increasing its effectiveness. This study aimed to present GP...The use of good practices (GP) can improve the technical quality and, as a consequence, the outcome of the Strategic Environmental Assessment (SEA) process, increasing its effectiveness. This study aimed to present GP pointed out by Brazilian practitioners (members of the SEA development teams) from the perspective afforded by their participation in processes of this tool. The data were collected through personal interviews with 11 professionals responsible for preparing a total of 17 SEAs, who were asked about what measures adopted in the SEA could be considered BP. The responses were audio-recorded, transcribed, and had their content assessed by Content Analysis technique. Nine GP were highlighted by practitioners. The GP indicated represent a valuable contribution to the improvement of future use of SEA, either in Brazil or in other countries, because they are the result of consolidated experience in real cases of application of the tool.展开更多
Agricultural Best Management Practices (BMPs) are effective ways to reduce agricultural nonpoint source pol ution from their source area to receiving water bodies. Characterization of BMPs in a watershed model is a ...Agricultural Best Management Practices (BMPs) are effective ways to reduce agricultural nonpoint source pol ution from their source area to receiving water bodies. Characterization of BMPs in a watershed model is a critical prerequisite for evaluating their impacts on water quantity and water quality in a complex system. However, limited research has reported about the representation of BMPs in fully distributed models. This paper presents a stepwise procedure for representation of several BMPs and assessment of their hydrologic impacts with a ful y distributed model, SEIM (Spatially Explicit Integrated Modeling). A case study is conducted in the 73 km2 Luoyugou watershed located in the Loess Plateau of China, where rainstorm erosion accounts for more than 60%of annual sediment load in average. Three BMPs are selected in this study including (i) conversion from farmland to forest, (i ) terrace, and (i i) no-til farming. These management practices are represented in the model through the alteration of model parameters characterizing their physical processes in the ifeld. The results of scenario assessment for a historical storm event showed that the maximum sediment reduction after terrace is about 97.3%, the average sediment reduction after no-till farming is about 9.5%, and the average sediment reduction after conversion from farmland to forest is 75.6%.展开更多
文摘Hospitality industry and hotels are considered to waste a lot of food.This research aims to focus on food waste management in luxury hotels by investigating three luxury hotels in Budapest(Hungary).The investigation focuses on qualitative methods,eleven interviews and observations were made from September to December 2018.Results show that in luxury hotels the main challenge is to ensure the correct balance between 5*experience and minimizing food waste.It was found that kitchen,breakfast open-buffet and staff canteen are among the leading causes of food waste,generating even higher food waste compared to conferences,banquets,orála carte options.While a broad range of practices exist that are believed to minimize the food waste of buffets,most of the luxury hotels are only implementing a small ratio of such practices and are only in the beginning of the planning phase to expand their practices in this regard.
文摘Approaches to the artificial impoundment and theoretical design of sedimentation retention basin are reviewed with particular attention to best management practice(BMP) to control agriculture and surface runoff. Sediments retention basins are the small version of farm pond used where a criteria of farm pond is not met. Such basin traps the pollutants and suspended solids prior to entry into streams and lakes. The study is focused with special reference to the assessment and control of non point source pollution(NPSP) from the sub basin area of Tai Lake in the Xishan County of Wuxi City of China. The author suggested two different approaches to conduct this study including theoretical design for sedimentation retention basin and computation of flow, sediment transport and deposition during the artificial impoundment of retention basin for BMP's utilization. Theoretical design will provide a useful function as a first line defense against the movement of sediments and transport of pollutants into the Tai Lake while the assessment of sediments deposition will help to make its proper use and periodic cleanup.
基金supported by the National Natural Science Foundation of China(Grants No.51279064 and 51209090)
文摘Urbanization causes hydrological change and increases stormwater runoff volumes, leading to flooding, erosion, and the degradation of instream ecosystem health. Best management practices (BMPs), like detention ponds and infiltration trenches, have been widely used to control flood runoff events for the past decade. However, low impact development (LID) options have been proposed as an alternative approach to better mimic the natural flow regime by using decentralized designs to control stormwater runoff at the source, rather than at a centralized location in the watershed. For highly urbanized areas, LID stormwater management practices such as bioretention cells and porous pavements can be used to retrofit existing infrastructure and reduce runoff volumes and peak flows. This paper describes a modeling approach to incorporate these LID practices and the two BMPs of detention ponds and infiltration trenches in an existing hydrological model to estimate the impacts of BMPs and LID practices on the surface runoff. The modeling approach has been used in a parking lot located in Lenexa, Kansas, USA, to predict hydrological performance of BMPs and LID practices. A performance indicator system including the flow duration curve, peak flow frequency exceedance curve, and runoff coefficient have been developed in an attempt to represent impacts of BMPs and LID practices on the entire spectrum of the runoff regime. Results demonstrate that use of these BMPs and LID practices leads to significant stormwater control for small rainfall events and less control for flood events.
文摘Water quality,flooding risk,and water consumption in urban areas are emerging issues.Urban impervious surfaces increase stormwater runoff,affecting ecosystems and leading to hydrogeological instability and flooding risk.Sustainable urban design strategies can contribute to counteract the negative impact of anthropic activities both at city-scale and global scale.Green and Blue Infrastructure(GBI)approaches,in particular,are an alternative to stormwater traditional management.In Europe,Sustainable Drainage System implementation copes with impervious surfaces to achieve water quality,amenity,and biodiversity increase.Best Management Practices,developed mainly in the USA,focus on specific measures for sustainable stormwater treatment.Water Sensitive Urban Design,spread in Australia and England,also aims to minimise the impact of developed areas preventing flood risk,limiting water consumption and enhancing environmental quality.In the USA and Canada,Low Impact Development offers design strategies to manage runoff and deliver structural practices to mimic predevelopment processes of infiltration,filtration and detention.
文摘This article reviews and provides evaluation guidelines for six major storm water best management practices includingbioretention areas, grassed swales/fi lter strips, infi ltration trenches, porous pavement, rain barrels and wet detentionponds. A detailed table allows for quick and easy design comparisons, including a separate table which allows forsite specifi c cost comparisons. A logic diagram is provided as a basic tool for screening the most feasible managementpractice.
文摘Biomass accumulation and partitioning into different plant parts is a dynamic process during the plant growing period, which is influenced by crop management and climate factors. Adequate knowledge of biomass partitioning is important to manage the crops to gain maximum partitioning of assimilates into plant parts of economic significance, i.e. tubers in potato. This study was conducted using two potato cultivars grown in a sandy soil with center pivot irrigation under full irrigation (FI;irrigation to replenish 100% of water loss by evapotranspiration [ET]) and deficit irrigation (DI;replenish only 80% ET) and two nitrogen(N) rates (pre-plant + in-seasonN rates of 56 + 112 or 168 + 336 kg/ha). Plant samples were taken on 22, 44, 66, and 98 days after seedling emergence (DAE). With high N rate, tuber biomass of ‘Umatilla Russet’ cultivar in relation to total plant biomass varied from 23% - 88% and 25% - 86% over 22 to 98 DAE for the FI and DI treatments, respectively. The corresponding partitioning ranges were 30% - 93% and 38% - 93% at the low N rate. With respect to the‘Ranger Russet’ cultivar, biomass partitioning to tubers ranged from 36% - 82% and 23% - 84% for the FI and DI, respectively, at the high N rate, and 29% - 87% and 39% - 95% at the low N rate. Overall, this study demonstrated that within the range of N rate and irrigation treatments the biomass portioning into tubers was largely similar in both cultivars.
文摘The use of good practices (GP) can improve the technical quality and, as a consequence, the outcome of the Strategic Environmental Assessment (SEA) process, increasing its effectiveness. This study aimed to present GP pointed out by Brazilian practitioners (members of the SEA development teams) from the perspective afforded by their participation in processes of this tool. The data were collected through personal interviews with 11 professionals responsible for preparing a total of 17 SEAs, who were asked about what measures adopted in the SEA could be considered BP. The responses were audio-recorded, transcribed, and had their content assessed by Content Analysis technique. Nine GP were highlighted by practitioners. The GP indicated represent a valuable contribution to the improvement of future use of SEA, either in Brazil or in other countries, because they are the result of consolidated experience in real cases of application of the tool.
基金the Major Science and Technology Program for Water Pollution Control and Treatment(No.2013ZX07103006-005)the National Science and Technology Support Program(No.2013BAC08B03-4)
文摘Agricultural Best Management Practices (BMPs) are effective ways to reduce agricultural nonpoint source pol ution from their source area to receiving water bodies. Characterization of BMPs in a watershed model is a critical prerequisite for evaluating their impacts on water quantity and water quality in a complex system. However, limited research has reported about the representation of BMPs in fully distributed models. This paper presents a stepwise procedure for representation of several BMPs and assessment of their hydrologic impacts with a ful y distributed model, SEIM (Spatially Explicit Integrated Modeling). A case study is conducted in the 73 km2 Luoyugou watershed located in the Loess Plateau of China, where rainstorm erosion accounts for more than 60%of annual sediment load in average. Three BMPs are selected in this study including (i) conversion from farmland to forest, (i ) terrace, and (i i) no-til farming. These management practices are represented in the model through the alteration of model parameters characterizing their physical processes in the ifeld. The results of scenario assessment for a historical storm event showed that the maximum sediment reduction after terrace is about 97.3%, the average sediment reduction after no-till farming is about 9.5%, and the average sediment reduction after conversion from farmland to forest is 75.6%.