Let (X,d) be a real metric linear space, with translation-invariant metric d and C a linear subspace of X. In this paper we use functionals in the Lipschitz dual of X to characterize those elements of G which are best...Let (X,d) be a real metric linear space, with translation-invariant metric d and C a linear subspace of X. In this paper we use functionals in the Lipschitz dual of X to characterize those elements of G which are best approximations to elements of X.We also give simultaneous characterization of elements of best approximation and also consider elements of ε-approximation.展开更多
文摘Let (X,d) be a real metric linear space, with translation-invariant metric d and C a linear subspace of X. In this paper we use functionals in the Lipschitz dual of X to characterize those elements of G which are best approximations to elements of X.We also give simultaneous characterization of elements of best approximation and also consider elements of ε-approximation.