期刊文献+
共找到1,317篇文章
< 1 2 66 >
每页显示 20 50 100
Customized heat treatment process enabled excellent mechanical properties in wire arc additively manufactured Mg-RE-Zn-Zr alloys
1
作者 Dong Ma Chunjie Xu +7 位作者 Shang Sui Yuanshen Qi Can Guo Zhongming Zhang Jun Tian Fanhong Zeng Sergei Remennik Dan Shechtman 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期276-289,共14页
Customized heat treatment is essential for enhancing the mechanical properties of additively manufactured metallic materials,especially for alloys with complex phase constituents and heterogenous microstructure.Howeve... Customized heat treatment is essential for enhancing the mechanical properties of additively manufactured metallic materials,especially for alloys with complex phase constituents and heterogenous microstructure.However,the interrelated evolutions of different microstructure features make it difficult to establish optimal heat treatment processes.Herein,we proposed a method for customized heat treatment process exploration and establishment to overcome this challenge for such kind of alloys,and a wire arc additively manufactured(WAAM)Mg-Gd-Y-Zn-Zr alloy with layered heterostructure was used for feasibility verification.Through this method,the optimal microstructures(fine grain,controllable amount of long period stacking ordered(LPSO)structure and nano-scaleβ'precipitates)and the corresponding customized heat treatment processes(520°C/30 min+200°C/48 h)were obtained to achieve a good combination of a high strength of 364 MPa and a considerable elongation of 6.2%,which surpassed those of other state-of-the-art WAAM-processed Mg alloys.Furthermore,we evidenced that the favorable effect of the undeformed LPSO structures on the mechanical properties was emphasized only when the nano-scaleβ'precipitates were present.It is believed that the findings promote the application of magnesium alloy workpieces and help to establish customized heat treatment processes for additively manufactured materials. 展开更多
关键词 wire arc additive manufacturing heat treatment Mg-RE-Zn-Zr alloys LPSO structure mechanical properties
下载PDF
Modeling asymmetric fracture mechanics of Mg alloy wire in drawing process
2
作者 Sunghoon Choi Jongwon Shin +1 位作者 Joung Sik Suh Dongchoul Kim 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期2057-2069,共13页
In this study,a numerical analysis was conducted on the ductile fracture of a 2-mm diameter Mg-1Zn-0.5Mn-0.5Sr-0.1Ca alloy wire during drawing.The hexagonally close-packed crystal structure of Mg alloys causes asymmet... In this study,a numerical analysis was conducted on the ductile fracture of a 2-mm diameter Mg-1Zn-0.5Mn-0.5Sr-0.1Ca alloy wire during drawing.The hexagonally close-packed crystal structure of Mg alloys causes asymmetric fracture behavior,especially in the compression region.The aim of this study is to develop a comprehensive damage model for Mg alloy wire that accurately predicts ductile fracture,with a focus on the compression region.A novel experimental method was introduced to measure the ductile fracture of Mg alloy wires under different stress states.The wire drawing process was simulated using the Generalized Incremental Stress-State dependent damage(GISSMO)Model and the Semi-Analytical Model for Polymers(SAMP)model.The damage model's prediction and the experimental results were found to be in excellent agreement,especially in determining crack initiation.Computational analysis established a safe zone diagram for die angle and reduction ratio,and experimental validation confirmed the feasibility of this approach.The proposed damage model can provide a practical and reliable analysis for optimizing the drawing process of Mg alloy wire. 展开更多
关键词 Mg alloy wire drawing Finite element method Damage model Safe zone diagram
下载PDF
Enhancing fatigue performance of AZ31 magnesium alloy components fabricated by cold metal transfer-based wire arc directed energy deposition through LPB
3
作者 Shambhu Kumar Manjhi Srikanth Bontha A.S.S.Balan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1638-1662,共25页
Cold Metal Transfer-Based Wire Arc Directed Energy Deposition(CMT-WA-DED)presents a promising avenue for the rapid fabrication of components crucial to automotive,shipbuilding,and aerospace industries.However,the susc... Cold Metal Transfer-Based Wire Arc Directed Energy Deposition(CMT-WA-DED)presents a promising avenue for the rapid fabrication of components crucial to automotive,shipbuilding,and aerospace industries.However,the susceptibility to fatigue of CMT-WA-DED-produced AZ31 Mg alloy components has impeded their widespread adoption for critical load-bearing applications.In this study,a comprehensive investigation into the fatigue behaviour of WA-DED-fabricated AZ31 Mg alloy has been carried out and compared to commercially available wrought AZ31 alloy.Our findings indicate that the as-deposited parts exhibit a lower fatigue life than wrought Mg alloy,primarily due to poor surface finish,tensile residual stress,porosity,and coarse grain microstructure inherent in the WA-DED process.Low Plasticity Burnishing(LPB)treatment is applied to mitigate these issues,which induce significant plastic deformation on the surface.This treatment resulted in a remarkable improvement of fatigue life by 42%,accompanied by a reduction in surface roughness,grain refinement and enhancement of compressive residual stress levels.Furthermore,during cyclic deformation,WA-DED specimens exhibited higher plasticity and dislocation density compared to both wrought and WA-DED+LPB specimens.A higher fraction of Low Angle Grain Boundaries(LAGBs)in WA-DED specimens contributed to multiple crack initiation sites and convoluted crack paths,ultimately leading to premature failure.In contrast,wrought and WA-DED+LPB specimens displayed a higher percentage of High Angle Grain Boundaries(HAGBs),which hindered dislocation movement and resulted in fewer crack initiation sites and less complex crack paths,thereby extending fatigue life.These findings underscore the effectiveness of LPB as a post-processing technique to enhance the fatigue performance of WA-DED-fabricated AZ31 Mg alloy components.Our study highlights the importance of LPB surface treatment on AZ31 Mg components produced by CMT-WA-DED to remove surface defects,enabling their widespread use in load-bearing applications. 展开更多
关键词 wire arc additive manufacturing AZ31 Mg alloy Low plasticity burnishing Low cycle fatigue test Strain amplitude
下载PDF
Effect of grain refinement induced by wire and arc additive manufacture (WAAM) on the corrosion behaviors of AZ31 magnesium alloy in NaCl solution 被引量:8
4
作者 Jianwei LI Youmin QIU +9 位作者 Junjie YANG Yinying SHENG Yanliang YI Xun ZENG Lianxi CHEN Fengliang YIN Jiangzhou SU Tiejun ZHANG Xin TONG Bin GUO 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第1期217-229,共13页
Additive manufacturing(AM)of Mg alloys has become a promising strategy for producing complex structures,but the corrosion performance of AM Mg components remains unexploited.In this study,wire and arc additive manufac... Additive manufacturing(AM)of Mg alloys has become a promising strategy for producing complex structures,but the corrosion performance of AM Mg components remains unexploited.In this study,wire and arc additive manufacturing(WAAM)was employed to produce single AZ31 layer.The results revealed that the WAAM AZ31 was characterized by significant grain refinement with non-textured crystallographic orientation,similar phase composition and stabilized corrosion performance comparing to the cast AZ31.These varied corrosion behaviors were principally ascribed to the size of grain,where cast AZ31 and WAAM AZ31 were featured by micro galvanic corrosion and intergranular corrosion,respectively. 展开更多
关键词 AZ31 magnesium alloy wire and arc additive manufacturing(WAAM) Grain refinement Microstructure Intergranular corrosion
下载PDF
Enhanced strength-ductility synergy in a wire and arc additively manufactured Mg alloy via tuning interlayer dwell time 被引量:2
5
作者 Dong Ma Chunjie Xu +6 位作者 Shang Sui Jun Tian Can Guo Xiangquan Wu Zhongming Zhang Dan Shechtman Sergei Remennik 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4696-4709,共14页
Strength-ductility trade-off is a common issue in Mg alloys. This work proposed that a synergistic enhancement of strength and ductility could be achieved through tuning interlayer dwell time(IDT) in the wire and arc ... Strength-ductility trade-off is a common issue in Mg alloys. This work proposed that a synergistic enhancement of strength and ductility could be achieved through tuning interlayer dwell time(IDT) in the wire and arc additive manufacturing(WAAM) process of Mg alloy.The thermal couples were used to monitor the thermal history during the WAAM process. Additionally, the effect of different IDTs on the microstructure characteristics and resultant mechanical properties of WAAM-processed Mg alloy thin-wall were investigated. The results showed that the stable temperature of the thin-wall component could reach 290 ℃ at IDT=0s, indicating that the thermal accumulation effect was remarkable. Consequently, unimodal coarse grains with an average size of 39.6 μm were generated, and the resultant room-temperature tensile property was poor. With the IDT extended to 60s, the thermal input and thermal dissipation reached a balance, and the stable temperature was only 170 ℃, closing to the initial temperature of the substrate. A refined grain structure with bimodal size distribution was obtained. The remelting zone had fine grains with the size of 15.2 μm, while the arc zone owned coarse grains with the size of 24.5 μm.The alternatively distributed coarse and fine grains lead to the elimination of strength-ductility trade-off. The ultimate tensile strength and elongation of the samples at IDT=60s are increased by 20.6 and 75.0% of those samples at IDT=0s, respectively. The findings will facilitate the development of additive manufacturing processes for advanced Mg alloys. 展开更多
关键词 wire arc additive manufacturing Interlayer dwell time Strength-ductility Magnesium alloys
下载PDF
Study on anisotropy of microstructure and mechanical properties of AZ31 magnesium alloy fabricated by wire arc additive manufacturing 被引量:1
6
作者 Dong Ma Chun-jie Xu +4 位作者 Jun Tian Shang Sui Can Guo Xiang-quan Wu Zhong-ming Zhang 《China Foundry》 SCIE CAS CSCD 2023年第4期280-288,共9页
Based on wire arc additive manufacturing(WAAM)technology,AZ31 magnesium alloy in bulk was successfully fabricated,and its microstructure as well as mechanical properties in different planes were observed and analyzed.... Based on wire arc additive manufacturing(WAAM)technology,AZ31 magnesium alloy in bulk was successfully fabricated,and its microstructure as well as mechanical properties in different planes were observed and analyzed.The AZ31 magnesium alloy has a similar microstructure in the building direction(Z)and travel direction(X),both of which are equiaxed grains.There are heat-affected zones(HAZs)with coarse grains below the fusion line.The second phase is primarily composed of the Mg17Al12 phase,which is evenly distributed in different directions.In addition,the residual stress varies in different directions.There is no significant difference in the hardness of the AZ31 alloy along the Z and X directions,with the average hardness being 68.4 HV and 67.9 HV,respectively.Even though the specimens’ultimate tensile strength along the travel direction is higher in comparison to that along the building direction,their differences in elongation and yield strength are smaller,indicating that the anisotropy of the mechanical properties of the material is small. 展开更多
关键词 magnesium alloy wire arc additive manufacturing ANISOTROPY MICROSTRUCTURE mechanical properties
下载PDF
High formability Mg-Zn-Gd wire facilitates ACL reconstruction via its swift degradation to accelerate intra-tunnel endochondral ossification
7
作者 Xuan He Ye Li +14 位作者 Hongwei Miao Jiankun Xu Michael Tim-yun Ong Chenmin Wang Lizhen Zheng Jiali Wang Le Huang Haiyue Zu Zhi Yao Jie Mi Bingyang Dai Xu Li Patrick Shu-hang Yung Guangyin Yuan Ling Qin 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期295-315,共21页
After reconstructing the anterior cruciate ligament(ACL),unsatisfactory bone tendon interface healing may often induce tunnel enlargement at the early healing stage.With good biological features and high formability,M... After reconstructing the anterior cruciate ligament(ACL),unsatisfactory bone tendon interface healing may often induce tunnel enlargement at the early healing stage.With good biological features and high formability,Magnesium-Zinc-Gadolinium(ZG21)wires are developed to bunch the tendon graft for matching the bone tunnel during transplantation.Microstructure,tensile strength,degradation,and cytotoxicity of ZG21 wire are evaluated.The rabbit model is used for assessing the biological effects of ZG21 wire by Micro-CT,histology,and mechanical test.The SEM/EDS,immunochemistry,and in vitro assessments are performed to investigate the underlying mechanism.Material tests demonstrate the high formability of ZG21 wire as surgical suture.Micro-CT shows ZG21 wire degradation accelerates tunnel bone formation,and histologically with earlier and more fibrocartilage regeneration at the healing interface.The mechanical test shows higher ultimate load in the ZG21 group.The SEM/EDS presents ZG21 wire degradation triggered calcium phosphate(Ca-P)deposition.IHC results demonstrate upregulation of Wnt3a,BMP2,and VEGF at the early phase and TGFβ3 and Type II collagen at the late phase of healing.In vitro tests also confirmed the Ca-P in the metal extract could elevate the expression of Wnt3a,βcatenin,ocn and opn to stimulate osteogenesis.Ex vivo tests of clinical samples indicated suturing with ZG21 wire did not weaken the ultimate loading of human tendon tissue.In conclusion,the ZG21 wire is feasible for tendon graft bunching.Its degradation products accelerated intra-tunnel endochondral ossification at the early healing stage and therefore enhanced bone-tendon interface healing in ACL reconstruction. 展开更多
关键词 Magnesium wire ACL reconstruction Magnesium alloy BIOMATERIALS Endochondral ossification
下载PDF
Degradable magnesium alloy suture promotes fibrocartilaginous interface regeneration in a rat rotator cuff transosseous repair model
8
作者 Baoxiang Zhang Wen Zhang +5 位作者 Fei Zhang Chao Ning Mingyang An Ke Yang Lili Tan Qiang Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期384-393,共10页
Despite transosseous rotator cuff tear repair using sutures is widely accepted for tendon-bone fixation,the fibrocartilaginous enthesis regeneration is still hardly achieved with the traditional sutures.In the present... Despite transosseous rotator cuff tear repair using sutures is widely accepted for tendon-bone fixation,the fibrocartilaginous enthesis regeneration is still hardly achieved with the traditional sutures.In the present work,degradable magnesium(Mg)alloy wire was applied to suture supraspinatus tendon in a rat acute rotator cuff tear model with Vicryl Plus 4±0 absorbable suture as control.The shoulder joint humerus-supraspinatus tendon complex specimens were retrieved at 4,8,and 12 weeks after operation.The Mg alloy suture groups showed better biomechanical properties in terms of ultimate load to failure.Gross observation showed that hyperplastic response of the scar tissue at the tendon-bone interface is progressively alleviated over time in the both Mg alloy suture and Vicryl suture groups.In the histological analysis,for Mg alloy suture groups,chondrocytes appear to proliferate at 4 weeks postoperatively,and the tendon-bone interface showed an orderly structural transition zone at 8 weeks postoperatively.The collagenous fiber tended to be aligned and the tendon-bone interlocking structures apparently formed,where transitional structure from unmineralized fibrocartilage to mineralized fibrocartilage was closer to the native fibrocartilaginous enthesis.In vivo degradation of the magnesium alloy wire was completed within 12 weeks.The results indicated that Mg alloy wire was promising as degradable suture with the potential to promotes fibrocartilaginous interface regeneration in rotator cuff repair. 展开更多
关键词 Rotator cuff repair Mg alloy wire Tendon-bone healing Fibrocartilaginous interface
下载PDF
Surface modification of biomedical magnesium alloy wires by micro-arc oxidation 被引量:10
9
作者 储成林 韩啸 +2 位作者 白晶 薛烽 朱剑豪 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第4期1058-1064,共7页
Magnesium alloy wires were processed by micro-arc oxidation (MAO) in a modified silicate-phosphate composite electrolyte containing hydroxyapatite (HA) nanopowders and NaOH. Effects of NaOH content in the composit... Magnesium alloy wires were processed by micro-arc oxidation (MAO) in a modified silicate-phosphate composite electrolyte containing hydroxyapatite (HA) nanopowders and NaOH. Effects of NaOH content in the composite electrolyte on the microstructure and properties of the MAO ceramic coatings on magnesium alloy wires were studied. It is found that the arc voltage of magnesium alloy wires in the micro-arc oxidation process is significantly reduced while the oxidation rate is accelerated. Addition of 2 g/L NaOH in the composite electrolyte is a better choice for improving corrosion resistance of magnesium alloy wires. During early simulated body fluids (SBF) immersion, the micro-arc oxidized magnesium alloy wires undergo a slow and stable degradation. After soaking for 28 d, the protective ceramic coating still shows no damage but significant degradation is observed for magnesium alloy wires after immersion for more than 60 d. 展开更多
关键词 magnesium alloy wire HYDROXYAPATITE micro-arc oxidation corrosion resistance
下载PDF
Microstructure and Mechanical Properties of Wire + Arc Additively Manufactured 2050 Al–Li Alloy Wall Deposits 被引量:12
10
作者 Hao Zhong Bojin Qi +2 位作者 Baoqiang Cong Zewu Qi Hongye Sun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第6期174-180,共7页
Aluminum–Lithium(Al–Li) alloy is a topic of great interest owing to its high strength and light weight, but there are only a few applications of Al–Li alloy in wire ss, a special AA2050 Al–Li alloy + arc additive ... Aluminum–Lithium(Al–Li) alloy is a topic of great interest owing to its high strength and light weight, but there are only a few applications of Al–Li alloy in wire ss, a special AA2050 Al–Li alloy + arc additive manufacturing(WAAM) process. To identify its feasibility in WAAM procewire was produced and employed in the production of straight-walled components, using a WAAM system based on variable polarity gas tungsten arc welding(VP-GTAW) process. The influence of post-deposited heat treatment on the microstructure and property of the deposit was investigated using optical micrographs(OM), scanning electron microscopy(SEM), X-ray diffraction(XRD), hardness and tensile properties tests. Results revealed that the microstructures of AA2050 aluminum deposits varied with their location layers. The upper layers consisted of fine equiaxed grains, while the bottom layer exhibited a coarse columnar structure. Mechanical properties witnessed a significant improvement after post-deposited heat treatment, with the average micro-hardness reaching 141 HV and the ultimate tensile strength exceeding 400 MPa. Fracture morphology exhibited a typical ductile fracture. 展开更多
关键词 Aluminum-copper-lithium alloy wire arc additive manufacturing Heat treatment Mechanical properties
下载PDF
Characteristic of laser-MIG hybrid welding with filling additional cold wire for aluminum alloy 被引量:21
11
作者 Chang Yunfeng Lei Zhen +2 位作者 Wang Xuyou Teng Bin Yang Haifeng 《China Welding》 EI CAS 2018年第3期35-41,共7页
The weld appearance, deposition rate, welding efficiency, stability of arc, laser keyhole characteristic, and weld property were studied by using a novel laser-MIG hybrid welding process with filling wire of aluminum ... The weld appearance, deposition rate, welding efficiency, stability of arc, laser keyhole characteristic, and weld property were studied by using a novel laser-MIG hybrid welding process with filling wire of aluminum alloy. The results were also compared with those by conventional laser-MIG hybrid welding process. It was found that with the suitable process parameters this novel welding process for aluminum alloy was stable and final weld bead had fine appearance. Compared to conventional laser-MIG hybrid welding process, during this novel welding process the stability of arc, the laser keyhole characteristic and the weld property were similar, while the keyhole cycle frequency and keyhole opening area had differences of 1.23% and 15.34%, respectively, and the welding efficiency increased by about 31% without increasing heat input. 展开更多
关键词 aluminum alloy hybrid welding with filling wire deposition rate laser keyhole
下载PDF
Effect of filler wire on the joint properties of AZ31 magnesium alloys using CO_2 laser welding 被引量:13
12
作者 王红英 李志军 《China Welding》 EI CAS 2007年第2期16-21,共6页
Laser welding with filler wire of AZ31 magnesium alloys is investigated using a CO2 laser experimental system. The effect of three different filler wires on the joint properties is researched. The results show that th... Laser welding with filler wire of AZ31 magnesium alloys is investigated using a CO2 laser experimental system. The effect of three different filler wires on the joint properties is researched. The results show that the weld appearance can be effectively improved when using laser welding with filler wire. The microhardness and tensile strength of joints are almost the same us those of the base metal when ER AZ31 or ER AZ61 wire is adopted. However, when the filler wire of ER 5356 aluminum alloy is used, the mechanical properties of flints become worse. For ER AZ31 and ER AZ61 filler wires, the microstructure of weld zone slws small dendrite grains. In comparison, for ER 5356 filler wire, the weld shows a structure of snowy dendrites and many intermetallic compounds and eutectic phases distribute in the dendrites. These intermetallic constituents with low melting point increase the tendency of hot crack and result in fiagile joint properties. Therefore, ER AZ31 and ER AZ61 wire are more suitable filler material than ER 5356 for CO2 laser welding of AZ31 magnesium alloys. 展开更多
关键词 magnesium alloys laser welding filler wire
下载PDF
Formability,microstructure evolution and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy using gas tungsten arc welding 被引量:13
13
作者 Yangyang Guo Gaofeng Quan +3 位作者 Yinglong Jiang Lingbao Ren Lingling Fan Houhong Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第1期192-201,共10页
Wire arc additive manufacturing(WAAM)technology has been used to fabricate the multi-layer single-pass deposited wall of AZ80M magnesium(Mg)alloy by gas tungsten arc welding.The formability,thermal cycles,microstructu... Wire arc additive manufacturing(WAAM)technology has been used to fabricate the multi-layer single-pass deposited wall of AZ80M magnesium(Mg)alloy by gas tungsten arc welding.The formability,thermal cycles,microstructural evolution and mechanical properties of the WAAM AZ80M Mg alloy were investigated.The results show that there was significant difference in the temperature variation and the geometries between the original several layers and the subsequent deposited layers.Owing to the arc energy input,the interpass temperature rised rapidly and then stabilized at 150℃.As a result,the width of the deposited wall increased and then kept stable.There were obvious differences in the microstructure of the WAAM AZ80M Mg alloy among the top zone,intermediate zone and bottom zone of deposited wall.During the arc deposition process,theβphase of the WAAM AZ80M Mg alloy redissolved due to the cyclic heat accumulation,and then precipitated in the grain boundary.The cyclic heat accumulation also led to weakening of dendrite segregation.From the substrate to the top zone,the hardness of the deposited wall decreased gradually,and the intermediate zone which was the main body of deposited wall had relatively uniform hardness.The tensile properties of the WAAM AZ80M Mg alloy were different between the vertical direction and the horizontal direction.And the maximum ultimate tensile strength of the WAAM AZ80M Mg alloy was 308 MPa which was close to that of the as-extruded AZ80M Mg alloy. 展开更多
关键词 wire arc additive manufacturing Magnesium alloy Thermal cycles Microstructure Mechanical properties
下载PDF
Effects of Cd addition in welding wires on microstructure and mechanical property of wire and arc additively manufactured Al-Cu alloy 被引量:4
14
作者 Ming-ye DONG Yue ZHAO +2 位作者 Quan LI Fu-de WANG Ai-ping WU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第3期750-764,共15页
Wall structures were made by cold metal transfer-based wire and arc additive manufacturing using two kinds of ER2319 welding wires with and without Cd elements. T6 heat treatment was used to improve mechanical propert... Wall structures were made by cold metal transfer-based wire and arc additive manufacturing using two kinds of ER2319 welding wires with and without Cd elements. T6 heat treatment was used to improve mechanical properties of these wall structures. Due to the higher vacancy binding energy of Cd, Cd-vacancy clusters are formed in the aging process and provide a large number of nucleation locations for θ′ phases. The higher diffusion coefficient of the Cd-vacancy cluster and the lower interfacial energy of θ′ phase lead to the formation of dense θ′ phases in the heat-treated α(Al). According to the strengthening model, after adding Cd in ER2319 welding wires, the yield strength increases by 43 MPa in the building direction of the heat-treated wall structures. 展开更多
关键词 CD welding wire wire and arc additive manufacturing Al-Cu alloy
下载PDF
Effect of heat treatment on the microstructure and mechanical properties of AZ80M magnesium alloy fabricated by wire arc additive manufacturing 被引量:9
15
作者 Yangyang Guo Gaofeng Quan +4 位作者 Mert Celikin Lingbao Ren Yuhang Zhan Lingling Fan Houhong Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第7期1930-1940,共11页
To maximize the benefits of wire arc additive manufacturing(WAAM)processes,the effect of post-deposition heat treatment on the microstructure and mechanical properties of WAAM AZ80M magnesium(Mg)alloy was investigated... To maximize the benefits of wire arc additive manufacturing(WAAM)processes,the effect of post-deposition heat treatment on the microstructure and mechanical properties of WAAM AZ80M magnesium(Mg)alloy was investigated.Three different heat treatment procedures(T4,T5 and T6)were performed.According to the results,after T4 heat treatment,the microsegregation of alloying elements was improved with the eutectic structure dissolved.Samples after T5 heat treatment inherited the net-like distribution of secondary phases similar to the as-deposited sample,where the eutectic structure covering the interdendritic regions and theβ-phase precipitated around the eutectic structure.After T6 heat treatment,the tinyβ-phases re-precipitated from the matrix and distributed in inner and outer of the grains.The hardness distribution of the samples went through T4 and T6 heat treatment was more uniform in comparison to that of T5 heat treated samples.The tensile test showed that the T6 heat treatment improved the strength and ductility,and the anisotropy between horizontal and vertical can be eliminated.Moreover,T4 treated samples exhibited highest ductility. 展开更多
关键词 wire arc additive manufacturing AZ80M magnesium alloy Heat treatment MICROSTRUCTURE Mechanical properties
下载PDF
Microstructure and mechanical properties of high-strength low alloy steel by wire and arc additive manufacturing 被引量:8
16
作者 Yi-li Dai Sheng-fu Yu +1 位作者 An-guo Huang Yu-sheng Shi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第7期933-942,共10页
A high-building multi-directional pipe joint(HBMDPJ)was fabricated by wire and arc additive manufacturing using high-strength low-alloy(HSLA)steel.The microstructure characteristics and transformation were observed an... A high-building multi-directional pipe joint(HBMDPJ)was fabricated by wire and arc additive manufacturing using high-strength low-alloy(HSLA)steel.The microstructure characteristics and transformation were observed and analyzed.The results show that the forming part includes four regions.The solidification zone solidifies as typical columnar crystals from a molten pool.The complete austenitizing zone forms from the solidification zone heated to a temperature greater than 1100℃,and the typical columnar crystals in this zone are difficult to observe.The partial austenitizing zone forms from the completely austenite zone heated between Ac1(austenite transition temperature)and1100℃,which is mainly equiaxed grains.After several thermal cycles,the partial austenitizing zone transforms to the tempering zone,which consistes of fully equiaxed grains.From the solidification zone to the tempering zone,the average grain size decreases from 75 to20μm.The mechanical properties of HBMDPJ satisfies the requirement for the intended application. 展开更多
关键词 wire and arc additive manufacturing high strength low alloy steel microstructure INCLUSIONS fine grain ferrite mechanical properties
下载PDF
Microstructure and property research on welded joints of 7xxx aluminum alloy welding wire TIG for 7075 aluminum alloy 被引量:10
17
作者 Li Xiaoping Liu Xiao +3 位作者 Li Runzhou Wang ZhuangZhuang Guo Lixiang Lei Weining 《China Welding》 CAS 2021年第4期58-64,共7页
7 xxx welding wire was self-made by spray forming ingots drawn to series welding wires products,and then TIG butt welding test is used for 5 mm thick 7075 high-strength aluminium alloy.After welding,the stress relief+... 7 xxx welding wire was self-made by spray forming ingots drawn to series welding wires products,and then TIG butt welding test is used for 5 mm thick 7075 high-strength aluminium alloy.After welding,the stress relief+solid-solution aging heat treatment(T6)were performed to joints,and the mechanical properties and microstructure of the joints before and after heat treatment were comparative analyzed.The results show that the properties of the heat-affected zone(HAZ)of the joint before heat treatment decreas,and the joint is softened.The welded joints tensile strength is 271.8 MPa,the elongation is 5.6%,and the average hardness of the weld is 118.4 HV.The second phase particles such asη(Mg Zn2),S(Al2 Cu Mg),Al13 Fe4 are distributed in a network layer,with no apparent element segregation.After heat treatment,the structure of each area of the joint is coarsened,and a small amount of Fe-containing impurity phases are distributed.Theηand S phases are dissolved in the matrix.The hardness of each area of the joint is increased to 155 HV,and the softening zone is disappeared,this leads the joint elongation close to 16.9%.The tensile strength is increased to 511.8 MPa,reaching 94%of the base metal tensile strength. 展开更多
关键词 7xxx aluminium alloy welding wire TIG welding on 7075 aluminium alloy heat treatment microstructure and properties
下载PDF
Wire and arc additive manufacturing of 4043 Al alloy using a cold metal transfer method 被引量:5
18
作者 Zhi-qiang Liu Pei-lei Zhang +2 位作者 Shao-wei Li Di Wu Zhi-shui Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第6期783-791,共9页
Cold metal transfer plus pulse(C+P)arc was applied in the additive manufacturing of 4043 Al alloy parts.Parameters in the manufacturing of the parts were investigated.The properties and microstructure of the parts wer... Cold metal transfer plus pulse(C+P)arc was applied in the additive manufacturing of 4043 Al alloy parts.Parameters in the manufacturing of the parts were investigated.The properties and microstructure of the parts were also characterized.Experimental results showed that welding at a speed of 8 mm/s and a wire feeding speed of 4.0 m/min was suitable to manufacture thin-walled parts,and the reciprocating scanning method could be adopted to manufacture thick-walled parts.The thin-walled parts of the C+P mode had fewer pores than those of the cold metal transfer(CMT)mode.The thin-and thick-walled parts of the C+P mode showed maximum tensile strengths of 172 and 178 MPa,respectively.Hardness decreased at the interface and in the coarse dendrite and increased in the refined grain area. 展开更多
关键词 wire arc additive manufacturing aluminum alloy cold metal transfer microstructure layer deposition
下载PDF
Joint performance in laser welding Al alloy with filler wire 被引量:1
19
作者 陈彦宾 李俐群 +2 位作者 彭小云 方俊飞 张雅利 《中国有色金属学会会刊:英文版》 CSCD 2005年第S2期87-91,共5页
CO2 laser welding aluminum alloy with filler wire was studied. The results indicate that the problems in CO2 laser welding of Al alloy, such as bad appearance of weld, easily excessive penetration and low strength, ca... CO2 laser welding aluminum alloy with filler wire was studied. The results indicate that the problems in CO2 laser welding of Al alloy, such as bad appearance of weld, easily excessive penetration and low strength, can be improved effectively by using laser welding with filler wire, and the maximum tensile strength of weld can reach 94% for the base metal. It also can be found that, the linear energy have great influence on the microstructure and mechanical properties of the joint. As the heat input increases, the cellular fir-tree crystals in the weld zone become sparse and the form of tensile fracture transforms from gliding fracture to brittle fracture. 展开更多
关键词 aluminum alloy laser WELDING FILLER wire mechanical PROPERTY
下载PDF
Corrosion resistance of aluminum alloy AA7022 wire fabricated by friction stir extrusion 被引量:1
20
作者 Kamin TAHMASBI Masoud MAHMOODI Hossein TAVAKOLI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第8期1601-1609,共9页
Friction stir extrusion(FSE)is known as an innovative manufacturing technology that makes it possible to directly produce wire via consolidation and extrusion of metal chips or solid billets.In this study,wire samples... Friction stir extrusion(FSE)is known as an innovative manufacturing technology that makes it possible to directly produce wire via consolidation and extrusion of metal chips or solid billets.In this study,wire samples were produced using aluminum alloy AA7022 machining chips by the use of the FSE.To this end,the microstructures and mechanical properties of the base material(BM)and the extruded samples were investigated.The corrosion resistance of the given samples was also determined using potentiodynamic polarization technique.The results showed that the samples manufactured at higher rotational speeds possessed good surface quality,the process temperature and the grain size similarly increased following the rise in rotational speed,and the mechanical properties consequently decreased.Using the FSE led to crystallite refinement,increase in volume fraction of grain boundaries,as well as re-distribution of precipitates affecting corrosion resistance.Furthermore,the findings of the corrosion tests revealed that the produced samples by the FSE had adequate corrosion resistance and the growth in die rotation rate augmented current density and subsequently reduced corrosion resistance. 展开更多
关键词 friction stir extrusion aluminum alloy wire grain size HARDNESS corrosion resistance
下载PDF
上一页 1 2 66 下一页 到第
使用帮助 返回顶部