期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Betamethasone Dipropionate Loaded in Nanoliposomes vs Conventional Betamethasone Dipropionate: Comparative Study of Permeability and Penetrability in Vitro and ex Vivo
1
作者 Cirana Rodriguez Adriana Camino +3 位作者 Anyoli Taly Evelyn Peña Alfredo Inatti Xenon Serrano 《Journal of Biosciences and Medicines》 2024年第10期140-156,共17页
A betamethasone dipropionate (BD) liposomal cream was developed to treat rheumatological, inflammatory, allergic diseases and psoriasis. BD is a corticosteroid, anti-inflammatory, and immunosuppressant. However, adver... A betamethasone dipropionate (BD) liposomal cream was developed to treat rheumatological, inflammatory, allergic diseases and psoriasis. BD is a corticosteroid, anti-inflammatory, and immunosuppressant. However, adverse effects are associated with prolonged topical use. For this reason, liposomes were loaded with BD because they offer excellent biocompatibility, bio adhesiveness, and penetrability that improve the effects caused by the conventional drug. Liposomal dispersions were prepared by emulsification using phospholipid 90 (lipid) and Tween 80 (surfactant). The particle size, polydispersity index (PDI), and zeta potential were measured using a particle analyzer. The betamethasone (BM) percentage of encapsulated active (EA) ingredient was also determined through High Performance Liquid Chromatography (HPLC). The Franz cell and tape stripping characterized these in vitro and ex vivo. Then the final formulation reached a particle size of 70.80 ± 3.31 nm, a PDI of 0.242 ± 0.038, a zeta potential of −11.68 ± 0.77 mv and encapsulate active of 83.1% ± 2.4, complying with the parameters of a nanotechnological formulation. In vitro and ex vivo studies confirmed significantly efficacy of the cream over the commercial product, through the greater penetration into the pig ear skin, resulting in an improved drug. Finally, the liposomal cream demonstrated significant potential for enhanced percutaneous absorption, attributed to its nanometric size. This innovative nanotechnology approach aims to reduce the frequency of topical applications, thereby minimizing the side effects associated with psoriasis treatment. 展开更多
关键词 NANOTECHNOLOGY betamethasone dipropionate PSORIASIS Liposomes Drug Carrier Systems
下载PDF
Anastomotic stoma coated with chitosan film as a betamethasone dipropionate carrier for peripheral nerve regeneration 被引量:3
2
作者 Ping Yao Peng Li +1 位作者 Jun-jian Jiang Hong-ye Li 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第2期309-316,共8页
Scar hyperplasia at the suture site is an important reason for hindering the repair effect of peripheral nerve injury anastomosis. To address this issue, two repair methods are often used. Biological agents are used t... Scar hyperplasia at the suture site is an important reason for hindering the repair effect of peripheral nerve injury anastomosis. To address this issue, two repair methods are often used. Biological agents are used to block nerve sutures and the surrounding tissue to achieve phys- ical anti-adhesion effects. Another agent is glucocorticosteroid, which can prevent scar growth by inhibiting inflammation. However, the overall effect of promoting regeneration of the injured nerve is not satisfactory. In this regard, we envision that these two methods can be combined and lead to shared understanding for achieving improved nerve repair. In this study, the right tibial nerve was transected 1 cm above the knee to establish a rat tibial nerve injury model. The incision was directly sutured after nerve transection. The anastomotic stoma was coated with 0.5 × 0.5 cm^2 chitosan sheets with betamethasone dipropionate. At 12 weeks after injury, compared with the con- trol and poly (D, L-lactic acid) groups, chitosan-betamethasone dipropionate film slowly degraded with the shape of the membrane still intact. Further, scar hyperplasia and the degree of adhesion at anastomotic stoma were obviously reduced, while the regenerated nerve fiber structure was complete and arranged in a good order in model rats. Electrophysiological study showed enhanced compound muscle action potential. Our results confirm that chitosan-betamethasone dipropionate film can effectively prevent local scar hyperplasia after tibial nerve repair and promote nerve regeneration. 展开更多
关键词 nerve regeneration CHITOSAN betamethasone dipropionate SCAR nerve injury repair function restoration FILM drug release CARRIER neural regeneration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部