This study discusses the sensitivity of convective parameterization schemes(CPSs) in the Regional Climate Model(version 4.3)(Reg CM4.3) over East/South Asia. The simulations using different CPSs in Reg CM are co...This study discusses the sensitivity of convective parameterization schemes(CPSs) in the Regional Climate Model(version 4.3)(Reg CM4.3) over East/South Asia. The simulations using different CPSs in Reg CM are compared to discover a suitable scheme for this region, as the performance of different schemes is greatly influenced by region and seasonality. Over Southeast China and the Bay of Bengal, the Grell scheme exhibits the lowest RMSEs of summer precipitation compared to observed data. Moreover, the Emanuel over land and Grell over ocean(ELGO) scheme enhances the simulation, in comparison with any single CPS(Grell/Emanuel) over Western Ghats, Sri Lanka, and Southeast India. Over the Huang–Huai–Hai Plain(3H) and Tibetan Plateau(TP) regions of China, the Tiedtke scheme simulates the more reasonable summer precipitation with high correlation coefficient and comparable amplitude. Especially, it reproduces a minimum convective precipitation bias of 8 mm d^-1and the lowest RMSEs throughout the year over East/South Asia. Furthermore, for seasonal variation of precipitation, the Tiedtke scheme results are closer to the observed data over the 3H and TP regions. However, none of the CPSs is able to simulate the seasonal variation over North Pakistan(NP). In comparison with previous research, the results of this study support the Grell scheme over South Asia. However, the Tiedtke scheme shows superiority for the 3H, TP and NP regions. The thicker PBL, less surface latent heat flux, the unique ability of deep convection and the entrainment process in the Tiedtke scheme are responsible for reducing the wet bias.展开更多
To describe the evolution of atmospheric processes and rainfall forecast in Tanzania, the Advanced Weather Research and Forecasting (WRF-ARW) model was used. The principal objectives of this study were 1) the understa...To describe the evolution of atmospheric processes and rainfall forecast in Tanzania, the Advanced Weather Research and Forecasting (WRF-ARW) model was used. The principal objectives of this study were 1) the understanding of mesoscale WRF model and adapting the model for Tanzania;2) to conduct numerical experiments using WRF model with different convective parameterization schemes (CP’s) and investigate the impact of each scheme on the quality of rainfall forecast;and 3) the investigation of the capability of WRF model to successfully simulate rainfall amount during strong downpour. The impact on the quality of rainfall forecast of six CP’s was investigated. Two rainy seasons, short season “Vuli” from October to December (OND) and long season “Masika” from March to May (MAM) were targeted. The results of numerical experiments showed that for rainfall prediction in Dar es Salaam and (the entire coast of the Indian Ocean), GD scheme performed better during OND and BMJ scheme during MAM. Results also showed that NC scheme should not be used, which is in agreement to the fact that in tropics rainfall is from convective activities. WRF model to some extent performs better in the cases of extreme rainfall.展开更多
It has been noted that when the convective Richardson number Ri* is used to characterize the depth of the entrainment zone, various parameterization schemes can be obtained. This situation is often attributed to the i...It has been noted that when the convective Richardson number Ri* is used to characterize the depth of the entrainment zone, various parameterization schemes can be obtained. This situation is often attributed to the invalidity of parcel theory. However, evidence shows that the convective Richardson number Ri* might be an improper characteristic scaling parameter for the entrainment process. An attempt to use an innovative parameter to parameterize the entrainment-zone thickness has been made in this paper. Based on the examination of the data of water-tank experiments and atmospheric measurements, it is found that the total lapse rate of potential temperature across the entrainment zone is proportional to that of the capping inversion layer. Inserting this relationship into the so-called parcel theory, it thus gives a new parameterization scheme for the depth of the entrainment zone. This scheme includes the lapse rate of the capping inversion layer that plays an important role in the entrainment process. Its physical representation is reasonable. The new scheme gives a better ordering of the data measured in both water-tank and atmosphere as compared with the traditional method using Ri*. These indicate that the parcel theory can describe the entrainment process suitably and that the new parameter is better than Ri*.展开更多
A modified cumulus parameterization scheme, suitable for use in a seasonal forecast model, is presented. This parameterization scheme is an improvement of the mass flux convection scheme developed by Gregory and Rownt...A modified cumulus parameterization scheme, suitable for use in a seasonal forecast model, is presented. This parameterization scheme is an improvement of the mass flux convection scheme developed by Gregory and Rowntree (1989; 1990). This convection scheme uses a 'bulk' cloud model to present an ensemble of convective clouds, and aims to represent shallow, deep, and mid-level convection. At present, this convection scheme is employed in the NCC T63L20 model (National Climate Center, China Meteorological Administration). Simulation results with this scheme have revealed some deficiencies in the scheme, although to some extent, it improves the accuracy of the simulation. In order to alleviate the deficiencies and reflect the effect of cumulus convection in the actual atmosphere, the scheme is modified and improved. The improvements include (i) the full estimation of the effects of the large-scale convergence in the lower layer upon cumulus convection, (ii) the revision of the initial convective mass flux, and (iii) the regulation of convective-scale downdrafts. A comparison of the results obtained by using the original model and the modified one shows that the improvement and modification of the original convection scheme is successful in simulating the precipitation and general circulation field, because the modified scheme provides a good simulation of the main features of seasonal precipitation in China, and an analysis of the anomaly correlation coefficient between the simulation and the observations confirms the improved results.展开更多
The mei-yu front heavy rainstorms occurred over Nanjing on 3 5 and 8 9 July 2003 and were simulated in this paper using the Weather Research and Forecasting Model (WRFv3.1) with various mesoscale convection parameteri...The mei-yu front heavy rainstorms occurred over Nanjing on 3 5 and 8 9 July 2003 and were simulated in this paper using the Weather Research and Forecasting Model (WRFv3.1) with various mesoscale convection parameterization schemes (MCPSs). The simulations show that the temporal and spatial evolution and distribution of rainstorms can be modeled; however, there was incongruity between the comparative simulations of four different MCPSs and the observed data. These disparities were exhibited in the simulations of both the 24-hour surface rainfall total and the hourly precipitation rate. Further analysis revealed that the discrepancies of vertical velocity and the convective vorticity vector (CVV) between the four simulations were attributed to the deviation of rainfall values. In addition, the simulations show that the mid-scale convection, particularly the mesoscale convection system (MCS) formation, can be well simulated with the proper mesoscale convection parameterization schemes and may be a crucial factor of the mei-yu front heavy rainstorm. These results suggest that, in an effort to enhance simulation and prediction of heavy rainfall and rainstorms, subsequent studies should focus on the development and improvement of MCPS.展开更多
In this paper, a 5-level spectral AGCM is used to examine the sensitivity of simulated East Asian summer monsoon circulation and rainfall to cumulus parameterization schemes. From the simulated results of East Asian ...In this paper, a 5-level spectral AGCM is used to examine the sensitivity of simulated East Asian summer monsoon circulation and rainfall to cumulus parameterization schemes. From the simulated results of East Asian monsoon circulations and rainfalls during the summers of 1987 and 1995, it is shown that the Kuo′s convective parameterization scheme is more suitable for the numerical simulation of East Asian summer monsoon rainfall and circulation. This may be due to that the cumulus in the rainfall system is not strong in the East Asian monsoon region.展开更多
Version 3.9 of WRF-ARW is run with a tropical belt configuration for a period from 2012 to 2016 in this study. The domain covers the entire tropics between 45°S and 45°N with a spatial resolution of about 45...Version 3.9 of WRF-ARW is run with a tropical belt configuration for a period from 2012 to 2016 in this study. The domain covers the entire tropics between 45°S and 45°N with a spatial resolution of about 45 km. In order to verify two radiation schemes and four cumulus convection schemes, eight experiments are performed with different combinations of physics parameterization schemes. The results show that eight experiments present reasonable spatial patterns of surface air temperature and precipitation in boreal summer, with the spatial correlation coefficient (COR) between simulated and observed temperature exceeding 0.95, and that between simulated and observed precipitation ranges from 0.65 to 0.82. The four experiments with the RRTMG radiation scheme show a better performance than the other four experiments with the CAM radiation scheme. In the four experiments with the RRTMG radiation scheme, the COR between simulated and observed surface air temperature is about 0.98, and that between simulated and observed precipitation ranges from 0.76 to 0.82. Comparatively, the two experiments using the new Tiedtke cumulus parameterization scheme can simulate better diurnal variation of precipitation in boreal summer than the other six experiments. In particular, for the diurnal cycle of precipitation over land and ocean, the experiment using the RRTMG radiation scheme and the new Tiedtke cumulus convection scheme shows that the peaks of precipitation rate appear at 0400 LST and 1600 LST, in agreement with observation.展开更多
According to the characteristics of organized cumulus convective precipitation in China,a cumulus parameterization scheme suitable for describing the organized convective precipitation in East Asia is presented and mo...According to the characteristics of organized cumulus convective precipitation in China,a cumulus parameterization scheme suitable for describing the organized convective precipitation in East Asia is presented and modified.The Kain-Fristch scheme is chosen as the scheme to be modified based on analyses and comparisons of simulated precipitation in East Asia by several commonly-used mesoscale parameterization schemes.A key dynamic parameter to dynamically control the cumulus parameterization is then proposed to improve the Kain-Fristch scheme.Numerical simulations of a typhoon case and a Mei-yu front rainfall case are carried out with the improved scheme,and the results show that the improved version performs better than the original in simulating the track and intensity of the typhoons,as well as the distribution of Mei-yu front precipitation.展开更多
The NCC T63L20 model of the National Climate Center, China Meteorological Administration is employed to simulate the 1998 summer flood, which mainly occurred in the region of the Yangtze River and Northeast China. For...The NCC T63L20 model of the National Climate Center, China Meteorological Administration is employed to simulate the 1998 summer flood, which mainly occurred in the region of the Yangtze River and Northeast China. For this study, two kinds of cumulus convection parameterized schemes are employed in this model respectively. The simulations show that the Gregory parameterized scheme, which is still used in the United Kingdom Meteorological Office routine model, simulates more reasonable rainfall amount and distribution compared to the Kuo-type scheme. Moreover, the Gregory scheme better simulates the tendency of general circulation than the Kuo-type scheme. On the whole, the Gregory scheme provides a good simulation of the main features of the seasonal precipitation and general circulation in China, although the simulated result still exhibits some departures from the observations.展开更多
An integrated vertical-slantwise convective parameterization scheme, based on the vertical Kuo-Anthes and the slantwise Nordeng convective parameterization schemes, is introduced into the MM5 model. By employing the M...An integrated vertical-slantwise convective parameterization scheme, based on the vertical Kuo-Anthes and the slantwise Nordeng convective parameterization schemes, is introduced into the MM5 model. By employing the MM5 model with the proposed scheme, numerical simulations of a snowstorm event that occurred over southern China on 28-29 January 2008 and of Typhoon Haitang (2005) are conducted. The results indicate that during the snowstorm event, the atmosphere was convectively stable in the vertical direction but with conditional symmetric instability (CSI) in the lower troposphere, and when the area of CSI developed and extended to upper levels, strong rising motion occurred and triggered the release of large amount of energy, producing enhanced convective precipitation with the total precipitation much closer to the observation. The development and strengthening of CSI corresponded to changes in the intensity of snowfall, convergence, and ascending motions of air, revealing that CSI was responsible for the initiation and growth of the snowstorm. The results from a 72-h explicit simulation of Typhoon Haitang indicate that CSI occurred mainly at lower levels with a well-defined spiral structure, and it tended to have a larger impact on the intensity of typhoon than on its track. The minimum pressure at the typhoon center for the 72-h runs with the integrated vertical-slantwise convective parameterization scheme was on average 3 hPa (maximum 8 hPa) lower than that from the runs with only the vertical cumulus parameterization scheme. Introducing the influence of CSI into the model has improved the warm core structure at the middle and upper levels of the typhoon, with stronger and persistent upward motions causing increased precipitation, and the latent heat released through convection in turn made the typhoon develop further.展开更多
针对弱环境场下局地对流性降水难于准确预报问题,本文以长江下游地区两次局地对流性降水过程为例,通过调整WRF模式中两类边界层参数化方案(YSU和ACM2)的湍流垂直混合强度,探究改善降水预报准确度的一种可行途径。结果表明:在模式默认的...针对弱环境场下局地对流性降水难于准确预报问题,本文以长江下游地区两次局地对流性降水过程为例,通过调整WRF模式中两类边界层参数化方案(YSU和ACM2)的湍流垂直混合强度,探究改善降水预报准确度的一种可行途径。结果表明:在模式默认的垂直混合强度下,YSU方案模拟的对流发展较缓,对流触发时间略晚;ACM2方案则由于垂直混合过强,模拟的对流弱于YSU方案,对流触发时间晚于观测1~2 h。无论是YSU还是ACM2方案,减弱边界层内垂直混合强度能够更准确模拟对流触发及其发展演变。不同垂直混合主要通过影响边界层内位温、水汽混合比、风的垂直分布和能量输送来影响对流过程模拟:减弱垂直混合后,对流前期边界层内更湿冷,风速和垂直风切变增大,同时对流有效位能(Convective Available Potential Energy,CAPE)增加,这些因素利于更早触发对流,模拟的对流强度也更强。展开更多
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2EW-QN208)a project of the National Natural Science Foundation of China (Grant No. 41275082)+1 种基金the National Basic Research Program of China (Grant Nos. 2010CB428502 and 2011CB952003)the R&D Special Fund for Public Welfare Industry (meteorology) of the Ministry of Finance and the Ministry of Science and Technology (GYHY201006014-04)
文摘This study discusses the sensitivity of convective parameterization schemes(CPSs) in the Regional Climate Model(version 4.3)(Reg CM4.3) over East/South Asia. The simulations using different CPSs in Reg CM are compared to discover a suitable scheme for this region, as the performance of different schemes is greatly influenced by region and seasonality. Over Southeast China and the Bay of Bengal, the Grell scheme exhibits the lowest RMSEs of summer precipitation compared to observed data. Moreover, the Emanuel over land and Grell over ocean(ELGO) scheme enhances the simulation, in comparison with any single CPS(Grell/Emanuel) over Western Ghats, Sri Lanka, and Southeast India. Over the Huang–Huai–Hai Plain(3H) and Tibetan Plateau(TP) regions of China, the Tiedtke scheme simulates the more reasonable summer precipitation with high correlation coefficient and comparable amplitude. Especially, it reproduces a minimum convective precipitation bias of 8 mm d^-1and the lowest RMSEs throughout the year over East/South Asia. Furthermore, for seasonal variation of precipitation, the Tiedtke scheme results are closer to the observed data over the 3H and TP regions. However, none of the CPSs is able to simulate the seasonal variation over North Pakistan(NP). In comparison with previous research, the results of this study support the Grell scheme over South Asia. However, the Tiedtke scheme shows superiority for the 3H, TP and NP regions. The thicker PBL, less surface latent heat flux, the unique ability of deep convection and the entrainment process in the Tiedtke scheme are responsible for reducing the wet bias.
文摘To describe the evolution of atmospheric processes and rainfall forecast in Tanzania, the Advanced Weather Research and Forecasting (WRF-ARW) model was used. The principal objectives of this study were 1) the understanding of mesoscale WRF model and adapting the model for Tanzania;2) to conduct numerical experiments using WRF model with different convective parameterization schemes (CP’s) and investigate the impact of each scheme on the quality of rainfall forecast;and 3) the investigation of the capability of WRF model to successfully simulate rainfall amount during strong downpour. The impact on the quality of rainfall forecast of six CP’s was investigated. Two rainy seasons, short season “Vuli” from October to December (OND) and long season “Masika” from March to May (MAM) were targeted. The results of numerical experiments showed that for rainfall prediction in Dar es Salaam and (the entire coast of the Indian Ocean), GD scheme performed better during OND and BMJ scheme during MAM. Results also showed that NC scheme should not be used, which is in agreement to the fact that in tropics rainfall is from convective activities. WRF model to some extent performs better in the cases of extreme rainfall.
基金This paper was supported by the National Natural Science Foundation of China under Grant Nos.40105002 and 40333027.
文摘It has been noted that when the convective Richardson number Ri* is used to characterize the depth of the entrainment zone, various parameterization schemes can be obtained. This situation is often attributed to the invalidity of parcel theory. However, evidence shows that the convective Richardson number Ri* might be an improper characteristic scaling parameter for the entrainment process. An attempt to use an innovative parameter to parameterize the entrainment-zone thickness has been made in this paper. Based on the examination of the data of water-tank experiments and atmospheric measurements, it is found that the total lapse rate of potential temperature across the entrainment zone is proportional to that of the capping inversion layer. Inserting this relationship into the so-called parcel theory, it thus gives a new parameterization scheme for the depth of the entrainment zone. This scheme includes the lapse rate of the capping inversion layer that plays an important role in the entrainment process. Its physical representation is reasonable. The new scheme gives a better ordering of the data measured in both water-tank and atmosphere as compared with the traditional method using Ri*. These indicate that the parcel theory can describe the entrainment process suitably and that the new parameter is better than Ri*.
基金supported jointly by the National Science Foundation of China under Grant No.40305010oversea outstanding young scientist project No.2002-1-2 of Chinese Academy of Sciences.
文摘A modified cumulus parameterization scheme, suitable for use in a seasonal forecast model, is presented. This parameterization scheme is an improvement of the mass flux convection scheme developed by Gregory and Rowntree (1989; 1990). This convection scheme uses a 'bulk' cloud model to present an ensemble of convective clouds, and aims to represent shallow, deep, and mid-level convection. At present, this convection scheme is employed in the NCC T63L20 model (National Climate Center, China Meteorological Administration). Simulation results with this scheme have revealed some deficiencies in the scheme, although to some extent, it improves the accuracy of the simulation. In order to alleviate the deficiencies and reflect the effect of cumulus convection in the actual atmosphere, the scheme is modified and improved. The improvements include (i) the full estimation of the effects of the large-scale convergence in the lower layer upon cumulus convection, (ii) the revision of the initial convective mass flux, and (iii) the regulation of convective-scale downdrafts. A comparison of the results obtained by using the original model and the modified one shows that the improvement and modification of the original convection scheme is successful in simulating the precipitation and general circulation field, because the modified scheme provides a good simulation of the main features of seasonal precipitation in China, and an analysis of the anomaly correlation coefficient between the simulation and the observations confirms the improved results.
基金supported jointly by the Projects of Jiangsu Key Lab of Meteorological Disaster (Grant No. Klme060207)the National Natural Science Foundation of China (Grant No. 40875031)
文摘The mei-yu front heavy rainstorms occurred over Nanjing on 3 5 and 8 9 July 2003 and were simulated in this paper using the Weather Research and Forecasting Model (WRFv3.1) with various mesoscale convection parameterization schemes (MCPSs). The simulations show that the temporal and spatial evolution and distribution of rainstorms can be modeled; however, there was incongruity between the comparative simulations of four different MCPSs and the observed data. These disparities were exhibited in the simulations of both the 24-hour surface rainfall total and the hourly precipitation rate. Further analysis revealed that the discrepancies of vertical velocity and the convective vorticity vector (CVV) between the four simulations were attributed to the deviation of rainfall values. In addition, the simulations show that the mid-scale convection, particularly the mesoscale convection system (MCS) formation, can be well simulated with the proper mesoscale convection parameterization schemes and may be a crucial factor of the mei-yu front heavy rainstorm. These results suggest that, in an effort to enhance simulation and prediction of heavy rainfall and rainstorms, subsequent studies should focus on the development and improvement of MCPS.
文摘In this paper, a 5-level spectral AGCM is used to examine the sensitivity of simulated East Asian summer monsoon circulation and rainfall to cumulus parameterization schemes. From the simulated results of East Asian monsoon circulations and rainfalls during the summers of 1987 and 1995, it is shown that the Kuo′s convective parameterization scheme is more suitable for the numerical simulation of East Asian summer monsoon rainfall and circulation. This may be due to that the cumulus in the rainfall system is not strong in the East Asian monsoon region.
基金supported by the National Key Research Program of China [grant number 2016YFB0200805)the National Natural Science Foundation of China [grant number 41575089]
文摘Version 3.9 of WRF-ARW is run with a tropical belt configuration for a period from 2012 to 2016 in this study. The domain covers the entire tropics between 45°S and 45°N with a spatial resolution of about 45 km. In order to verify two radiation schemes and four cumulus convection schemes, eight experiments are performed with different combinations of physics parameterization schemes. The results show that eight experiments present reasonable spatial patterns of surface air temperature and precipitation in boreal summer, with the spatial correlation coefficient (COR) between simulated and observed temperature exceeding 0.95, and that between simulated and observed precipitation ranges from 0.65 to 0.82. The four experiments with the RRTMG radiation scheme show a better performance than the other four experiments with the CAM radiation scheme. In the four experiments with the RRTMG radiation scheme, the COR between simulated and observed surface air temperature is about 0.98, and that between simulated and observed precipitation ranges from 0.76 to 0.82. Comparatively, the two experiments using the new Tiedtke cumulus parameterization scheme can simulate better diurnal variation of precipitation in boreal summer than the other six experiments. In particular, for the diurnal cycle of precipitation over land and ocean, the experiment using the RRTMG radiation scheme and the new Tiedtke cumulus convection scheme shows that the peaks of precipitation rate appear at 0400 LST and 1600 LST, in agreement with observation.
基金National Basic Research Program of China(2013CB430105)National Natural Science Foundation of China(41405059,40775038,40875031,40975036)
文摘According to the characteristics of organized cumulus convective precipitation in China,a cumulus parameterization scheme suitable for describing the organized convective precipitation in East Asia is presented and modified.The Kain-Fristch scheme is chosen as the scheme to be modified based on analyses and comparisons of simulated precipitation in East Asia by several commonly-used mesoscale parameterization schemes.A key dynamic parameter to dynamically control the cumulus parameterization is then proposed to improve the Kain-Fristch scheme.Numerical simulations of a typhoon case and a Mei-yu front rainfall case are carried out with the improved scheme,and the results show that the improved version performs better than the original in simulating the track and intensity of the typhoons,as well as the distribution of Mei-yu front precipitation.
基金This study was supportedjointly by the Chinese Academy of Sciences Key AspectsProgram for Knowledge Innovation Project(KZCX2-203)and the National Natural Science Foundation of China un-der Grant No.40035010.
文摘The NCC T63L20 model of the National Climate Center, China Meteorological Administration is employed to simulate the 1998 summer flood, which mainly occurred in the region of the Yangtze River and Northeast China. For this study, two kinds of cumulus convection parameterized schemes are employed in this model respectively. The simulations show that the Gregory parameterized scheme, which is still used in the United Kingdom Meteorological Office routine model, simulates more reasonable rainfall amount and distribution compared to the Kuo-type scheme. Moreover, the Gregory scheme better simulates the tendency of general circulation than the Kuo-type scheme. On the whole, the Gregory scheme provides a good simulation of the main features of the seasonal precipitation and general circulation in China, although the simulated result still exhibits some departures from the observations.
基金Supported by the National Nature Science Foundation of China (41005029 and 40830235)National Basic Research and Development (973) Program of China (2009CB421502)
文摘An integrated vertical-slantwise convective parameterization scheme, based on the vertical Kuo-Anthes and the slantwise Nordeng convective parameterization schemes, is introduced into the MM5 model. By employing the MM5 model with the proposed scheme, numerical simulations of a snowstorm event that occurred over southern China on 28-29 January 2008 and of Typhoon Haitang (2005) are conducted. The results indicate that during the snowstorm event, the atmosphere was convectively stable in the vertical direction but with conditional symmetric instability (CSI) in the lower troposphere, and when the area of CSI developed and extended to upper levels, strong rising motion occurred and triggered the release of large amount of energy, producing enhanced convective precipitation with the total precipitation much closer to the observation. The development and strengthening of CSI corresponded to changes in the intensity of snowfall, convergence, and ascending motions of air, revealing that CSI was responsible for the initiation and growth of the snowstorm. The results from a 72-h explicit simulation of Typhoon Haitang indicate that CSI occurred mainly at lower levels with a well-defined spiral structure, and it tended to have a larger impact on the intensity of typhoon than on its track. The minimum pressure at the typhoon center for the 72-h runs with the integrated vertical-slantwise convective parameterization scheme was on average 3 hPa (maximum 8 hPa) lower than that from the runs with only the vertical cumulus parameterization scheme. Introducing the influence of CSI into the model has improved the warm core structure at the middle and upper levels of the typhoon, with stronger and persistent upward motions causing increased precipitation, and the latent heat released through convection in turn made the typhoon develop further.
文摘针对弱环境场下局地对流性降水难于准确预报问题,本文以长江下游地区两次局地对流性降水过程为例,通过调整WRF模式中两类边界层参数化方案(YSU和ACM2)的湍流垂直混合强度,探究改善降水预报准确度的一种可行途径。结果表明:在模式默认的垂直混合强度下,YSU方案模拟的对流发展较缓,对流触发时间略晚;ACM2方案则由于垂直混合过强,模拟的对流弱于YSU方案,对流触发时间晚于观测1~2 h。无论是YSU还是ACM2方案,减弱边界层内垂直混合强度能够更准确模拟对流触发及其发展演变。不同垂直混合主要通过影响边界层内位温、水汽混合比、风的垂直分布和能量输送来影响对流过程模拟:减弱垂直混合后,对流前期边界层内更湿冷,风速和垂直风切变增大,同时对流有效位能(Convective Available Potential Energy,CAPE)增加,这些因素利于更早触发对流,模拟的对流强度也更强。