期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
BpMADS12 gene role in lignin biosynthesis of Betula platyphylla Suk by transcriptome analysis 被引量:4
1
作者 Huiyu Li Yang Yang +4 位作者 Zijia Wang Xiaohong Guo Feifei Liu Jing Jiang Guifeng Liu 《Journal of Forestry Research》 SCIE CAS CSCD 2016年第5期1111-1120,共10页
MADS-box transcription factors show highly diverse regulatory functions in a wide variety of organisms. In this study, we characterized a MADS-box gene (BpMADS12) from the white birch (Betula platyphylla Suk). Thi... MADS-box transcription factors show highly diverse regulatory functions in a wide variety of organisms. In this study, we characterized a MADS-box gene (BpMADS12) from the white birch (Betula platyphylla Suk). This gene is a member of the suppressor of overexpression of CO 1/tomato MADS 3 class of MADS-box genes. We generated lines overexpressing BpMADS12 and found that these had higher levels of lignin compared to that observed in nontransgenic lines. Transcriptome anal- ysis revealed numerous changes in gene expression patterns. In total, 8794 differentially expressed genes were identified, including 5006 upregulated unigenes and 3788 downregulated unigenes in BpMADS-overexpression lines. Differentially expressed genes involved in the pathways for lignin and brassinosteroid biosynthesis were significantly enriched and may have contributed to phenotypic changes. The results from a quantitative RT-PCR analysis were consistent those obtained with the transcriptome analysis.Our transcriptome analysis, in combination with measure- ment of lignin level, indicated that BpMADS12 promotes lignin synthesis through regulation of key enzymes in response to brassinosteroid signaling. These results suggest that this MADS-box protein is crucial to all subsequent structural events and provide a good foundation for studies aiming to elucidate the developmental mechanisms underlying formation of wood. 展开更多
关键词 betula platyphylla . bpmads12 - ligninbiosynthesis - transcriptome analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部