Biomechanical characteristics of the root system of hornbeam (Carpinus betulus) were assessed by measuring Root Area Ratio (RAR) values and tensile strength of root specimens of eight hornbeam trees growing on hil...Biomechanical characteristics of the root system of hornbeam (Carpinus betulus) were assessed by measuring Root Area Ratio (RAR) values and tensile strength of root specimens of eight hornbeam trees growing on hilly terrain of Northern Iran. RAR values of the roots were obtained using profile trenching method at soil depth of the top 0.1 m. In total 123 root specimens were analyzed for tensile strength. Results indicate that in general, RAR decreases with depth, following a power function. The RAR values in up and down slopes have no significant statistical differences. In most cases, the maximum RAR values were located in soil depth of the top 0.1 m, with maximum rooting depth at about 0.75 m. The minimum and maximum RAR values along the profiles were 0.004% and 6.431% for down slope and 0.004% and 3.995% for up slope, respectively. The number of roots in the up and down slope trenches was not significantly different. In the same manner as for RAR, number of roots distributing with depth was satisfactorily approximated a power function. The penetration depths of above 90 percent of the roots were at soil depths of 50 cm and 60 cm for up and down slopes, respectively. Results of Spearman's bivariate correlation showed no significant correlation between the RAR value with tree diameter and gradient of slope and number of roots. The mean value of root tensile strength was 31.51 ± 1.05 MPa and root tensile strength decreased with the increase in root diameter, following a power law equation. Using ANCOVA, we found intraspecies variation of tensile strength.展开更多
Biomechanical characteristics of the root system of hornbeam(Carpinus betulus) were assessed by measuring Root Area Ratio(RAR) values and tensile strength of root specimens of eight hornbeam trees growing on hilly ter...Biomechanical characteristics of the root system of hornbeam(Carpinus betulus) were assessed by measuring Root Area Ratio(RAR) values and tensile strength of root specimens of eight hornbeam trees growing on hilly terrain of Northern Iran.RAR values of the roots were obtained using profile trenching method at soil depth of the top 0.1 m.In total 123 root specimens were analyzed for tensile strength.Results indicate that in general, RAR decreases with depth, following a power function.The RAR values in up and down slopes have no significant statistical differences.In most cases, the maximum RAR values were located in soil depth of the top 0.1 m, with maximum rooting depth at about 0.75 m.The minimum and maximum RAR values along the profiles were 0.004% and 6.431% for down slope and 0.004% and 3.995% for up slope, respectively.The number of roots in the up and down slope trenches was not significantly different.In the same manner as for RAR, number of roots distributing with depth was satisfactorily approximated a power function.The penetration depths of above 90 percent of the roots were at soil depths of 50 cm and 60 cm for up and down slopes, respectively.Results of Spearman's bivariate correlation showed no significant correlation between the RAR value with tree diameter and gradient of slope and number of roots.The mean value of root tensile strength was 31.51 ± 1.05 MPa and root tensile strength decreased with the increase in root diameter, follow-ing a power law equation.Using ANCOVA, we found intraspecies variation of tensile strength.展开更多
This study examined the effect of site and elevation on the oven-dry density and volumetric shrinkage of hornbeam (Carpinus betulus) wood. For this purpose, 45 normal hornbeam trees from three different sites (Maza...This study examined the effect of site and elevation on the oven-dry density and volumetric shrinkage of hornbeam (Carpinus betulus) wood. For this purpose, 45 normal hornbeam trees from three different sites (Mazandaran, Guilan and Golestan) at three elevations, 300 m (low elevation), 700 m (intermediate elevation) and 1100 m (high elevation) from natural forest in northern Iran were selected. Disks were cut at breast height from mature wood and test samples were prepared to determine physical proper- ties, i.e., wood density and volumetric shrinkage. The results show that there are significant differences between site and elevation on these physical properties of wood. The interaction effects between site ~ elevation on wood density and volumetric shrinkage were also statistically significant. At any fixed site, wood density and volumetric shrinkage increased with elevation. As well, their values at Guilan were higher than those at the other two sites. The relationship between wood density and volumetric shrinkage was deter- mined by simple regression equations. Strong, positive relationships between wood density and volumetric shrinkage at each site were found. Again, these were stronger at the Guilan site than at the other two sites. Given a fixed site, the correlation at high eleva- tion was stronger than at the other two elevations.展开更多
Despite the importance of Hyrcanian forests for biodiversity conservation, a few studies with biomass destruction has been done to predict biomass and carbon pools from this forest and there is a lack of knowledge in ...Despite the importance of Hyrcanian forests for biodiversity conservation, a few studies with biomass destruction has been done to predict biomass and carbon pools from this forest and there is a lack of knowledge in our country. Biomass and leaf area index (LAI) are important variables in many ecological and environmental applications and forest management. In this paper, allometric biomass and leaf area equations were developed for three common Hyrcanian tree species, Oriental Beech (Fagus orientalis Lipsky), Hornbeam (Carpinus Betulus Lipsky) and Chestnut- leaved Oak (Quercus castaneifolia C. A. Mey). To evaluate and estimate the leaf biomass and leaf area index of Oriental Beech, Horbeam and Chestnut-leaved Oak, 21, 27 and 17 individuals were selected and felled down, respectively. Tree characteristics such as diameter at breast height, total height, crown length and perpendicular diameters were measured. Destructive sampling was applied for determination of leaf biomass and LAI. Allometric equations were calculated for estimation of leaf biomass and LAI using simple linear regression and nonlinear regression analysis. The equations were compared based on several modelling parameters. Model comparison and selection were based on R2, Akaike’s information criterion (AIC), prediction error sums of squares, model standard error estimate (SEE), ΔAIC, and a correction factor. Based on the results, the mean values of leaf area, leaf biomass and LAI for Oriental Beech were 53.05 cm<sup>2</sup>, 0.176 gr, 2.16, for Hornbeam were 27.2 cm<sup>2</sup>, 0.128 gr, 1.13 and for Chestnut-leaved Oak were 62.419 cm<sup>2</sup>, 0.401 gr, 2.26, respectively. The highest significant correlation for Oriental Beech was found between LAI and total height (R2</sup>adj</sub>= 0. 931), the highest significant correlation for Hornbeam was found between LAI and Dbh (R<sup>2</sup><sub>adj</sub> = 0. 956) and the highest significance for Chestnut-leaved Oak was found between LAI and SqrtDbh (R2</sup>adj</sub> = 0. 956). Also, the best equations were obtained by means of an exponential regression model for Oriental Beech, the Log-transformed regression model for Hornbeam and of a transformed regression model for Chestnut-leaved Oak.展开更多
文摘Biomechanical characteristics of the root system of hornbeam (Carpinus betulus) were assessed by measuring Root Area Ratio (RAR) values and tensile strength of root specimens of eight hornbeam trees growing on hilly terrain of Northern Iran. RAR values of the roots were obtained using profile trenching method at soil depth of the top 0.1 m. In total 123 root specimens were analyzed for tensile strength. Results indicate that in general, RAR decreases with depth, following a power function. The RAR values in up and down slopes have no significant statistical differences. In most cases, the maximum RAR values were located in soil depth of the top 0.1 m, with maximum rooting depth at about 0.75 m. The minimum and maximum RAR values along the profiles were 0.004% and 6.431% for down slope and 0.004% and 3.995% for up slope, respectively. The number of roots in the up and down slope trenches was not significantly different. In the same manner as for RAR, number of roots distributing with depth was satisfactorily approximated a power function. The penetration depths of above 90 percent of the roots were at soil depths of 50 cm and 60 cm for up and down slopes, respectively. Results of Spearman's bivariate correlation showed no significant correlation between the RAR value with tree diameter and gradient of slope and number of roots. The mean value of root tensile strength was 31.51 ± 1.05 MPa and root tensile strength decreased with the increase in root diameter, following a power law equation. Using ANCOVA, we found intraspecies variation of tensile strength.
文摘Biomechanical characteristics of the root system of hornbeam(Carpinus betulus) were assessed by measuring Root Area Ratio(RAR) values and tensile strength of root specimens of eight hornbeam trees growing on hilly terrain of Northern Iran.RAR values of the roots were obtained using profile trenching method at soil depth of the top 0.1 m.In total 123 root specimens were analyzed for tensile strength.Results indicate that in general, RAR decreases with depth, following a power function.The RAR values in up and down slopes have no significant statistical differences.In most cases, the maximum RAR values were located in soil depth of the top 0.1 m, with maximum rooting depth at about 0.75 m.The minimum and maximum RAR values along the profiles were 0.004% and 6.431% for down slope and 0.004% and 3.995% for up slope, respectively.The number of roots in the up and down slope trenches was not significantly different.In the same manner as for RAR, number of roots distributing with depth was satisfactorily approximated a power function.The penetration depths of above 90 percent of the roots were at soil depths of 50 cm and 60 cm for up and down slopes, respectively.Results of Spearman's bivariate correlation showed no significant correlation between the RAR value with tree diameter and gradient of slope and number of roots.The mean value of root tensile strength was 31.51 ± 1.05 MPa and root tensile strength decreased with the increase in root diameter, follow-ing a power law equation.Using ANCOVA, we found intraspecies variation of tensile strength.
文摘This study examined the effect of site and elevation on the oven-dry density and volumetric shrinkage of hornbeam (Carpinus betulus) wood. For this purpose, 45 normal hornbeam trees from three different sites (Mazandaran, Guilan and Golestan) at three elevations, 300 m (low elevation), 700 m (intermediate elevation) and 1100 m (high elevation) from natural forest in northern Iran were selected. Disks were cut at breast height from mature wood and test samples were prepared to determine physical proper- ties, i.e., wood density and volumetric shrinkage. The results show that there are significant differences between site and elevation on these physical properties of wood. The interaction effects between site ~ elevation on wood density and volumetric shrinkage were also statistically significant. At any fixed site, wood density and volumetric shrinkage increased with elevation. As well, their values at Guilan were higher than those at the other two sites. The relationship between wood density and volumetric shrinkage was deter- mined by simple regression equations. Strong, positive relationships between wood density and volumetric shrinkage at each site were found. Again, these were stronger at the Guilan site than at the other two sites. Given a fixed site, the correlation at high eleva- tion was stronger than at the other two elevations.
文摘Despite the importance of Hyrcanian forests for biodiversity conservation, a few studies with biomass destruction has been done to predict biomass and carbon pools from this forest and there is a lack of knowledge in our country. Biomass and leaf area index (LAI) are important variables in many ecological and environmental applications and forest management. In this paper, allometric biomass and leaf area equations were developed for three common Hyrcanian tree species, Oriental Beech (Fagus orientalis Lipsky), Hornbeam (Carpinus Betulus Lipsky) and Chestnut- leaved Oak (Quercus castaneifolia C. A. Mey). To evaluate and estimate the leaf biomass and leaf area index of Oriental Beech, Horbeam and Chestnut-leaved Oak, 21, 27 and 17 individuals were selected and felled down, respectively. Tree characteristics such as diameter at breast height, total height, crown length and perpendicular diameters were measured. Destructive sampling was applied for determination of leaf biomass and LAI. Allometric equations were calculated for estimation of leaf biomass and LAI using simple linear regression and nonlinear regression analysis. The equations were compared based on several modelling parameters. Model comparison and selection were based on R2, Akaike’s information criterion (AIC), prediction error sums of squares, model standard error estimate (SEE), ΔAIC, and a correction factor. Based on the results, the mean values of leaf area, leaf biomass and LAI for Oriental Beech were 53.05 cm<sup>2</sup>, 0.176 gr, 2.16, for Hornbeam were 27.2 cm<sup>2</sup>, 0.128 gr, 1.13 and for Chestnut-leaved Oak were 62.419 cm<sup>2</sup>, 0.401 gr, 2.26, respectively. The highest significant correlation for Oriental Beech was found between LAI and total height (R2</sup>adj</sub>= 0. 931), the highest significant correlation for Hornbeam was found between LAI and Dbh (R<sup>2</sup><sub>adj</sub> = 0. 956) and the highest significance for Chestnut-leaved Oak was found between LAI and SqrtDbh (R2</sup>adj</sub> = 0. 956). Also, the best equations were obtained by means of an exponential regression model for Oriental Beech, the Log-transformed regression model for Hornbeam and of a transformed regression model for Chestnut-leaved Oak.